蒋明喆, 成贵学, 赵晋斌. 基于改进DDPG的多能园区典型日调度研究[J]. 电网技术, 2022, 46(5): 1867-1876. DOI: 10.13335/j.1000-3673.pst.2021.0998
引用本文: 蒋明喆, 成贵学, 赵晋斌. 基于改进DDPG的多能园区典型日调度研究[J]. 电网技术, 2022, 46(5): 1867-1876. DOI: 10.13335/j.1000-3673.pst.2021.0998
JIANG Mingzhe, CHENG Guixue, ZHAO Jinbin. Typical Daily Scheduling if Improved DDPG Multifunctional Industrial Park[J]. Power System Technology, 2022, 46(5): 1867-1876. DOI: 10.13335/j.1000-3673.pst.2021.0998
Citation: JIANG Mingzhe, CHENG Guixue, ZHAO Jinbin. Typical Daily Scheduling if Improved DDPG Multifunctional Industrial Park[J]. Power System Technology, 2022, 46(5): 1867-1876. DOI: 10.13335/j.1000-3673.pst.2021.0998

基于改进DDPG的多能园区典型日调度研究

Typical Daily Scheduling if Improved DDPG Multifunctional Industrial Park

  • 摘要: 电-气-热综合能源系统(power gas heat integrated energy system,IPGHES)中可再生能源出力的波动性、负荷需求的随机性、热水环流的动态特性给调度过程带来了诸多挑战,传统的随机调度方法无法适应综合能源系统负荷和可再生能源的多样性。针对以上问题,提出一种基于改进深度确定性策略梯度(improved deep deterministic policy gradient,IDDPG)算法的典型日调度方法,灵活处理供需过程中的随机性问题。首先将优先级经验回放(prioritized experience replay,PER)机制加入到DDPG的经验池中以区分不同经验的价值,并将采用方差递减高斯过程的OU随机噪声加入到策略网络参数向量中,提高探索性能,使用二阶振荡贝叶斯(second order oscillatory-Bayesian,SOO-Bayes)算法对结构参数进行调节,然后构建以能源交换、设备折旧、供需不平衡量为成本的与IDDPG数据交互的园区动态IPGHES模型后,定义状态空间、调度动作以及奖励函数,继而根据IDDPG对工作日与双休日进行决策调度分析与比对,最后采用某高校实际微电网算例证明所提调度方法在工作日和双休日都比随机调度、Cplex求解器调度和传统的DDPG调度方法具有更好的效果。

     

    Abstract: The volatility of renewable energy output, the randomness of load demand and the dynamic characteristics of hot water circulation in the power-gas-heat integrated energy system (IPGHES) have brought many challenges for the scheduling process, which makes the traditional stochastic scheduling methods unable to adapt to the load of integrated energy system and diversity of renewable energy. In response to the above issues, a typical daily scheduling method based on the improved deep deterministic policy gradient (IDDPG) algorithm is proposed to flexibly solve the randomness problems in the supply and demand process. First, the prioritized experience replay (PER) mechanism is added to the experience tank of the DDPG to distinguish the values of the different experiences. Then, the OU random noise using of the Gaussian process of decreasing variance is applied to the strategy network parameter vector to improve the exploration performance. Further, the second order oscillatory-Bayesian (SOO-Bayes) algorithm is utilized to adjust the structural parameters. By constructing the dynamic IPGHES of park model that interacts with the IDDPG data at the cost of energy exchange, equipment depreciation and imbalance between supply and demand, the status space, the scheduling action and the bonus functionare defined, and the decision-making scheduling of the working days and the weekends is analyzed and contrasted according to the IDDPG. Finally, an actual micro-grid example in a university is used to prove that the proposed scheduling method is better than the random scheduling, the CPLEX solver scheduling and the traditional DDPG scheduling.

     

/

返回文章
返回