李萍, 王久和. 基于无源与自抗扰的Vienna整流器控制策略研究[J]. 电网技术, 2022, 46(4): 1575-1584. DOI: 10.13335/j.1000-3673.pst.2021.0749
引用本文: 李萍, 王久和. 基于无源与自抗扰的Vienna整流器控制策略研究[J]. 电网技术, 2022, 46(4): 1575-1584. DOI: 10.13335/j.1000-3673.pst.2021.0749
LI Ping, WANG Jiuhe. Control Strategy of Vienna Rectifier Based on Passivity-based and Active Disturbance Rejection Controller[J]. Power System Technology, 2022, 46(4): 1575-1584. DOI: 10.13335/j.1000-3673.pst.2021.0749
Citation: LI Ping, WANG Jiuhe. Control Strategy of Vienna Rectifier Based on Passivity-based and Active Disturbance Rejection Controller[J]. Power System Technology, 2022, 46(4): 1575-1584. DOI: 10.13335/j.1000-3673.pst.2021.0749

基于无源与自抗扰的Vienna整流器控制策略研究

Control Strategy of Vienna Rectifier Based on Passivity-based and Active Disturbance Rejection Controller

  • 摘要: 为提高整流器抗干扰能力与减少对电网的不良影响,采用T型VIENNA整流器实施直流输出电压、交流输入电流的综合控制。在建立三相T型VIENNA整流器数学模型的基础上,提出非线性虚拟阻尼注入的无源电流控制算法,使输入电流具有跟踪速度快、稳态精度高、谐波畸变率低的特性;采用直流侧电压反馈误差非线性控制的自抗扰算法,实现了在负载扰动和电网电压波动时直流侧电压的快速恢复和稳定输出。该控制策略与典型的电压比例-积分调节(proportional-integral controller,PI)+电流PI或传统无源电流控制策略相比,可使Vienna整流器运行于高功率因数,低谐波畸变率,直流侧输出电压稳定,抗负载、电网电压扰动能力强。仿真与实验结果验证了T型Vienna整流器电压、电流误差非线性控制的无源与自抗扰策略的可行性和有效性。

     

    Abstract: In order to improve the anti-interference ability for the rectifier and reduce the adverse effect on the power grid, T-typed Vienna rectifier is adopted to implement the comprehensive control of the DC voltage output and the AC current inputs. Based on the mathematical model of the three-phase T-typed Vienna rectifier, a passivity-based controller for the current tracking algorithm with nonlinear virtual damping injection is proposed to realize the tracking of the command current at a high speed, and with high accuracy and low harmonic distortion; The active disturbance rejection control(ADRC) algorithm with nonlinear control on the DC side voltage error is adopted to improve the ability of the rectifier output voltage to resist load disturbance and grid voltage fluctuation, and realize the output voltage stability and fast recovery. Compared with the typical voltage PI + current PI or the traditional passivity-based current control strategy, the proposed algorithm makes the Vienna rectifier operate with high power factor, with low harmonic distortion, stable DC output voltage, and strong resistance to the load and grid voltage disturbance. The simulation and experimental results verify the feasibility and effectiveness of the passivity-based control with nonlinear virtual damping and the active disturbance rejection control strategy for the T-typed Vienna rectifiers.

     

/

返回文章
返回