史凯钰, 张东霞, 韩肖清, 解治军. 基于LSTM与迁移学习的光伏发电功率预测数字孪生模型[J]. 电网技术, 2022, 46(4): 1363-1371. DOI: 10.13335/j.1000-3673.pst.2021.0738
引用本文: 史凯钰, 张东霞, 韩肖清, 解治军. 基于LSTM与迁移学习的光伏发电功率预测数字孪生模型[J]. 电网技术, 2022, 46(4): 1363-1371. DOI: 10.13335/j.1000-3673.pst.2021.0738
SHI Kaiyu, ZHANG Dongxia, HAN Xiaoqing, XIE Zhijun. Digital Twin Model of Photovoltaic Power Generation Prediction Based on LSTM and Transfer Learning[J]. Power System Technology, 2022, 46(4): 1363-1371. DOI: 10.13335/j.1000-3673.pst.2021.0738
Citation: SHI Kaiyu, ZHANG Dongxia, HAN Xiaoqing, XIE Zhijun. Digital Twin Model of Photovoltaic Power Generation Prediction Based on LSTM and Transfer Learning[J]. Power System Technology, 2022, 46(4): 1363-1371. DOI: 10.13335/j.1000-3673.pst.2021.0738

基于LSTM与迁移学习的光伏发电功率预测数字孪生模型

Digital Twin Model of Photovoltaic Power Generation Prediction Based on LSTM and Transfer Learning

  • 摘要: 文章提出了一种基于长短期记忆网络(long short term memory network,LSTM),面向光伏发电功率预测的数字孪生模型,并通过迁移学习将此模型应用到其他投入运行时间较短、数据不足的光伏系统发电功率预测中。光伏发电功率由于受到太阳辐照度、温度和一些随机因素的影响,具有较强的间歇性和波动性,因此很难进行精确的光伏功率预测;所提出的数字孪生模型,实现了与光伏系统物理实体的同步和实时更新,因此获得比传统预测方法更准确的预测结果,同时利用从历史数据充足的光伏系统中学到的知识来辅助历史数据有限的光伏系统建立发电功率预测数字孪生模型,不仅可以得到精确的预测结果而且节省了模型训练时间。文中通过Queensland大学开源网站中3个不同站点以及山西晋能清洁能源公司的光伏历史数据验证了所提方法的有效性。

     

    Abstract: This paper proposes a digital twin model based on the long-term & short-term memory network (LSTM) for the photovoltaic power generation prediction. This model is applied in the power generation prediction of other photovoltaic systems that have a short operating time and insufficient data through transfer learning. Due to the influences of solar irradiance, temperature and other random factors, the photovoltaic power generation has strong intermittent and volatility, which is difficult to make accurate photovoltaic power prediction. The proposed digital twin model realizes the synchronization and real-time update with the physical entity of the photovoltaic system, thus obtaining more accurate prediction results than the traditional prediction methods. At the same time, the knowledge learned from the photovoltaic systems with sufficient historical data is used to assist the photovoltaic systems with limited historical data to establish a power generation power prediction digital twin model, which can not only obtain the accurate prediction results but also save the model training time. This paper verifies the effectiveness of the proposed method through the historical photovoltaic data from three different sites on the Queensland University open source website and the Jinneng Clean Energy Company, Shanxi province.

     

/

返回文章
返回