殷豪, 丁伟锋, 陈顺, 王陈恩, 陈嘉铭, 孟安波. 基于生成对抗网络和纵横交叉粒子群算法的光伏数据缺失重构方法[J]. 电网技术, 2022, 46(4): 1372-1381. DOI: 10.13335/j.1000-3673.pst.2021.0694
引用本文: 殷豪, 丁伟锋, 陈顺, 王陈恩, 陈嘉铭, 孟安波. 基于生成对抗网络和纵横交叉粒子群算法的光伏数据缺失重构方法[J]. 电网技术, 2022, 46(4): 1372-1381. DOI: 10.13335/j.1000-3673.pst.2021.0694
YIN Hao, DING Weifeng, CHEN Shun, WANG Chenen, CHEN Jiaming, MENG Anbo. Reconstruction Method for Missing Data in Photovoltaic Based on Generative Adversarial Network and Crisscross Particle Swarm Optimization Algorithm[J]. Power System Technology, 2022, 46(4): 1372-1381. DOI: 10.13335/j.1000-3673.pst.2021.0694
Citation: YIN Hao, DING Weifeng, CHEN Shun, WANG Chenen, CHEN Jiaming, MENG Anbo. Reconstruction Method for Missing Data in Photovoltaic Based on Generative Adversarial Network and Crisscross Particle Swarm Optimization Algorithm[J]. Power System Technology, 2022, 46(4): 1372-1381. DOI: 10.13335/j.1000-3673.pst.2021.0694

基于生成对抗网络和纵横交叉粒子群算法的光伏数据缺失重构方法

Reconstruction Method for Missing Data in Photovoltaic Based on Generative Adversarial Network and Crisscross Particle Swarm Optimization Algorithm

  • 摘要: 针对设备故障和人为干扰等因素造成光伏数据缺失的问题,提出了一种基于生成对抗网络和纵横交叉粒子群算法的光伏数据缺失重构方法。首先,使用Wasserstein散度生成对抗网络(Wasserstein divergence for GANs,WGAN-div)学习光伏数据的时序性规律与耦合关系;其次,设计了重构约束,通过优化生成器的噪声输入,使得重构后的样本最大限度贴近真实样本;针对优化高维变量问题,采用纵横交叉算法催化粒子群算法的寻优过程,防止优化时出现早熟问题。实验结果表明,在光伏数据含有大量缺失值时,所提方法具有较高的重构准确率。该方法也适用于电力系统中类似数据的缺失值重构,具有良好的应用前景。

     

    Abstract: Aiming at the problem of photovoltaic data missing caused by the equipment failure or the human interference, a reconstruction method for the missing data in photovoltaics is proposed based on the generative adversarial network and the crisscross particle swarm optimization algorithm. Firstly, the Wasserstein divergence generation antagonism network (WGAN-div) is used to learn the timing law and the coupling relationship of the photovoltaic data. Secondly, the reconstruction constraints are designed to optimize the noise input of the generator, so that the reconstructed samples are close to the actual samples to the maximum extent. As for the problem of optimizing the high-dimensional variables, the vertical and horizontal crossover algorithm is used to catalyze the optimization process of particle swarm optimization to prevent the premature problems during the optimization. Experimental results show that the proposed method has high reconstruction accuracy when the photovoltaic data contains a large number of missing values. This method is also suitable for the missing value reconstruction of similar data in the power system, which has a good application prospect.

     

/

返回文章
返回