刘皓璐, 邵建伟, 王雪, 韩学森, 刘璇, 刘士齐. 基于数字孪生的配电自动化终端设备状态评价与故障预判[J]. 电网技术, 2022, 46(4): 1605-1613. DOI: 10.13335/j.1000-3673.pst.2021.0661
引用本文: 刘皓璐, 邵建伟, 王雪, 韩学森, 刘璇, 刘士齐. 基于数字孪生的配电自动化终端设备状态评价与故障预判[J]. 电网技术, 2022, 46(4): 1605-1613. DOI: 10.13335/j.1000-3673.pst.2021.0661
LIU Haolu, SHAO Jianwei, WANG Xue, HAN Xuesen, LIU Xuan, LIU Shiqi. State Evaluation and Fault Prediction of Distribution Automation Terminal Equipment Based on Digital Twins[J]. Power System Technology, 2022, 46(4): 1605-1613. DOI: 10.13335/j.1000-3673.pst.2021.0661
Citation: LIU Haolu, SHAO Jianwei, WANG Xue, HAN Xuesen, LIU Xuan, LIU Shiqi. State Evaluation and Fault Prediction of Distribution Automation Terminal Equipment Based on Digital Twins[J]. Power System Technology, 2022, 46(4): 1605-1613. DOI: 10.13335/j.1000-3673.pst.2021.0661

基于数字孪生的配电自动化终端设备状态评价与故障预判

State Evaluation and Fault Prediction of Distribution Automation Terminal Equipment Based on Digital Twins

  • 摘要: 数字孪生旨在构建物理实体从现实空间到虚拟模型的映射,通过双向交互数据的实时闭环驱动,模拟出物理实体的实时状态和动态特征。配电自动化设备作为电力系统中的重要元件,一旦发生故障将会给电力系统造成重大经济损失。该文以数字孪生技术作为配电自动化终端设备与配电主站间信息交互、预判故障、辅助配网运维的基础,通过统计分析某地区配电自动化终端采集的历史数据与处缺信息,在数字孪生体系中构建并实时更新、修正状态评价评语集、评价权重及故障集,同时搭建智能状态评价与故障预判模拟模型,为实现对配电自动化终端设备状态的实时监测、进行配网运维检修指导提供了参考。

     

    Abstract: The digital twin aims to construct the mapping of physical entities from the real space to the virtual model. Through the real-time closed-loop drive of the two-way interactive data, the real-time status and dynamic characteristics of the physical entities are simulated. As an important component in the power system, the distribution automation equipment will cause major economic losses to the power system if it fails. Based on the digital twin technology, this paper realizes the functions of information interaction, fault prediction, and early maintenance between the distribution automation terminal equipment and the distribution master station. The status evaluation comment set, the evaluation weight and the fault set are constructed and corrected in real time in the digital twin system through statistical analysis of the historical data and fault handling information collected byat the distribution automation terminals in a certain area. At the same time, an intelligent state evaluation and failure prediction model is built to provide a reference for the real-time monitoring of the state of distribution automation terminal equipment and a guidance for the distribution network operation and maintenance.

     

/

返回文章
返回