赵恺, 石立宝. 基于改进一维卷积神经网络的电力系统暂态稳定评估[J]. 电网技术, 2021, 45(8): 2945-2957. DOI: 10.13335/j.1000-3673.pst.2021.0450
引用本文: 赵恺, 石立宝. 基于改进一维卷积神经网络的电力系统暂态稳定评估[J]. 电网技术, 2021, 45(8): 2945-2957. DOI: 10.13335/j.1000-3673.pst.2021.0450
ZHAO Kai, SHI Libao. Transient Stability Assessment of Power System Based on Improved One-dimensional Convolutional Neural Network[J]. Power System Technology, 2021, 45(8): 2945-2957. DOI: 10.13335/j.1000-3673.pst.2021.0450
Citation: ZHAO Kai, SHI Libao. Transient Stability Assessment of Power System Based on Improved One-dimensional Convolutional Neural Network[J]. Power System Technology, 2021, 45(8): 2945-2957. DOI: 10.13335/j.1000-3673.pst.2021.0450

基于改进一维卷积神经网络的电力系统暂态稳定评估

Transient Stability Assessment of Power System Based on Improved One-dimensional Convolutional Neural Network

  • 摘要: 为充分挖掘电力系统暂态过程中量测数据的时序信息,并进一步提高电力系统暂态稳定评估的准确率,提出了一种基于改进一维卷积神经网络的电力系统暂态稳定评估方法。该方法直接以底层量测数据作为输入特征,通过使用多尺寸卷积核来替代传统的单尺寸卷积核,能够有效提取量测数据的多粒度时序信息,实现了端到端的暂态稳定评估。另一方面,引入了焦点损失函数来指导模型训练,其能发掘困难样本并且缓解样本不均衡问题,进一步提升了模型的辨识性能。此外,通过应用Guided Grad-CAM算法对暂态评估模型的类激活图进行可视化分析,提升了模型的可解释性和透明性。在新英格兰10机39节点算例系统上的仿真分析表明,相较于基于传统机器学习和深度学习的暂态稳定评估方法,所提出的方法具有更优的评估性能,并且对受“污染”数据具有更好的鲁棒性。

     

    Abstract: In order to fully mine the temporal information of the measurement data in the transient process of a power system, and further improve the accuracy of power system transient stability assessment (TSA), a TSA model based on the improved one-dimensional convolutional neural network (1D-CNN) is proposed. This model directly employs the underlying measurements as the input feature. By using a multi-size convolutional kernel to replace the traditional single-size convolutional kernel, the multi-grained temporal information of the measurement data is extracted effectively, realizing the end-to-end TSA. On the other hand, the focal loss function is introduced to guide the model training, which effectively discovers the difficult samples and alleviates the imbalanced classes of the samples, improveing the identification performance of the model. In addition, by applying the Guided Grad-CAM method the class activation map of the TSA model is visually analyzed, improving the interpretability and transparency of the model. The simulation results performed on the New England 39-bus test system demonstrate that compared with the TSA methods based on the traditional machine learning and deep learning, the proposed method has better evaluation performance, and that it is more robust to those "contaminated" data.

     

/

返回文章
返回