李冠争, 李斌, 王帅, 李超, 刘昊, 田杨阳. 基于特征选择和随机森林的电力系统受扰后动态频率预测[J]. 电网技术, 2021, 45(7): 2492-2502. DOI: 10.13335/j.1000-3673.pst.2021.0027
引用本文: 李冠争, 李斌, 王帅, 李超, 刘昊, 田杨阳. 基于特征选择和随机森林的电力系统受扰后动态频率预测[J]. 电网技术, 2021, 45(7): 2492-2502. DOI: 10.13335/j.1000-3673.pst.2021.0027
LI Guanzheng, LI Bin, WANG Shuai, LI Chao, LIU Hao, TIAN Yangyang. Dynamic Frequency Prediction of Power System Post-disturbance Based on Feature Selection and Random Forest[J]. Power System Technology, 2021, 45(7): 2492-2502. DOI: 10.13335/j.1000-3673.pst.2021.0027
Citation: LI Guanzheng, LI Bin, WANG Shuai, LI Chao, LIU Hao, TIAN Yangyang. Dynamic Frequency Prediction of Power System Post-disturbance Based on Feature Selection and Random Forest[J]. Power System Technology, 2021, 45(7): 2492-2502. DOI: 10.13335/j.1000-3673.pst.2021.0027

基于特征选择和随机森林的电力系统受扰后动态频率预测

Dynamic Frequency Prediction of Power System Post-disturbance Based on Feature Selection and Random Forest

  • 摘要: 基于机器学习的电网受扰后动态频率预测方法往往忽视系统拓扑变化,造成当电网拓扑改变后原训练模型可能不再适用。为此,提出一种基于随机森林(random forest,RF)的电网频率预测方法。考虑到随机森林算法的训练时间与特征数量成正比,提出基于斯皮尔曼相关性和层次聚类凝聚的特征去冗余方法,降低输入特征数量。在此基础上,提取反映电网动态频率的关键特征,进一步降低训练时间。对输入特征去冗余前后以及提取关键特征后的不同情况进行对比分析,结果显示所提算法在保证高预测准确率的前提下,能大幅缩短训练时间。新英格兰39节点上的仿真测试验证了所提算法的快速性、容错性和准确性。

     

    Abstract: The dynamic frequency prediction method based on machine learning generally ignores the changes of system topology, causing the result that the original trained model may not be applicable. To solve this problem, a new method for frequency prediction based on random forest(RF) is proposed. Considering that the training time of the RF algorithm is proportional to the number of the features, a Spearman correlation and hierarchical clustering aggregation method is used to remove the redundancy and reduce the number of the initial features. On this basis, the features that play a key role in the system frequency are extracted, which further reduces the training time. The different situations before and after the redundancy removal and the key features extraction are compared and analyzed, showing that the proposed algorithm may greatly shorten the training time under the premise of ensuring high prediction accuracy. Simulation results on the New England 39 system show that the proposed algorithm is fast, fault tolerant and accurate.

     

/

返回文章
返回