刘亚珲, 赵倩. 基于聚类经验模态分解的CNN-LSTM超短期电力负荷预测[J]. 电网技术, 2021, 45(11): 4444-4451. DOI: 10.13335/j.1000-3673.pst.2021.0016
引用本文: 刘亚珲, 赵倩. 基于聚类经验模态分解的CNN-LSTM超短期电力负荷预测[J]. 电网技术, 2021, 45(11): 4444-4451. DOI: 10.13335/j.1000-3673.pst.2021.0016
LIU Yahui, ZHAO Qian. Ultra-short-term Power Load Forecasting Based on Cluster Empirical Mode Decomposition of CNN-LSTM[J]. Power System Technology, 2021, 45(11): 4444-4451. DOI: 10.13335/j.1000-3673.pst.2021.0016
Citation: LIU Yahui, ZHAO Qian. Ultra-short-term Power Load Forecasting Based on Cluster Empirical Mode Decomposition of CNN-LSTM[J]. Power System Technology, 2021, 45(11): 4444-4451. DOI: 10.13335/j.1000-3673.pst.2021.0016

基于聚类经验模态分解的CNN-LSTM超短期电力负荷预测

Ultra-short-term Power Load Forecasting Based on Cluster Empirical Mode Decomposition of CNN-LSTM

  • 摘要: 为了减少复杂环境因素对电力负荷超短期预测效果的影响,提高算法的预测精度和运算效率,该文提出一种基于聚类经验模态分解(cluster empirical mode decomposition,CEMD)的卷积神经网络和长短期记忆网络(convolutional neural network and long short term memory network,CNN-LSTM)混合预测算法。该算法首先通过经验模态分解法将负荷数据分解为平稳性好、规律性强的若干本征模态函数(intrinsic mode functions,IMF)和残差(residual,Res)。其次为了简化后续模型的计算体量,运用k均值聚类方法对分解所得的各分量进行分组集成,同时分析不同聚类数对应的预测效果,选取最优聚类标签构造神经网络输入数据。之后将各组数据分别输入到CNN-LSTM混合神经网络中,利用CNN挖掘数据间的特征形成特征向量,并将其输入到LSTM中进行预测。最后将所有预测结果进行线性相加得到完整预测负荷。通过在真实负荷上进行验证并与现有模型进行比较,所提方法具有更高的预测精度。

     

    Abstract: To reduce the influence of complicated environmental factors on the results of the ultra-short-term electrical load forecasting and improve the prediction precision and operation efficiency of the algorithms, this paper proposes a CNN-LSTM hybrid prediction algorithm based on the cluster empirical mode decomposition (CEMD). Firstly, this empirical mode decomposition (EMD) is used to decompose the load data into several intrinsic mode functions (IMF) and residual (Res) with the excellent smoothness and regularity. Secondly, for the sake of simplify the calculation volume of the subsequent model, the k-means clustering method is used to group and integrate the decomposed components. In the mean time, by analyzing the prediction effect of different clustering numbers, the optimal clustering tag is selected to construct the input data of the neural network. After that, the data of each group are input into the CNN-LSTM hybrid neural network, where the CNN mines the features between the data to form the feature vectors which are input into LSTM for prediction. Finally, all the forecasting results are added linearly to get the complete forecast load. Compared with the existing models, the proposed method in this paper has higher prediction accuracy through the real load test.

     

/

返回文章
返回