彭大健, 裴玮, 肖浩, 杨艳红, 唐成虹. 数据驱动的用户需求响应行为建模与应用[J]. 电网技术, 2021, 45(7): 2577-2585. DOI: 10.13335/j.1000-3673.pst.2020.2010
引用本文: 彭大健, 裴玮, 肖浩, 杨艳红, 唐成虹. 数据驱动的用户需求响应行为建模与应用[J]. 电网技术, 2021, 45(7): 2577-2585. DOI: 10.13335/j.1000-3673.pst.2020.2010
PENG Dajian, PEI Wei, XIAO Hao, YANG Yanhong, TANG Chenghong. Data-driven Consumer Demand Response Behavior Modelization and Application[J]. Power System Technology, 2021, 45(7): 2577-2585. DOI: 10.13335/j.1000-3673.pst.2020.2010
Citation: PENG Dajian, PEI Wei, XIAO Hao, YANG Yanhong, TANG Chenghong. Data-driven Consumer Demand Response Behavior Modelization and Application[J]. Power System Technology, 2021, 45(7): 2577-2585. DOI: 10.13335/j.1000-3673.pst.2020.2010

数据驱动的用户需求响应行为建模与应用

Data-driven Consumer Demand Response Behavior Modelization and Application

  • 摘要: 随着售电侧电力市场改革推进,参与需求响应的用户数量日益增加,由于参与互动用户的特性不一、响应能力差异大,多类型用户组合后还造成整体响应特性呈现高维、非线性、非凸的复杂特征,这对于传统基于模型驱动的互动建模和优化定价策略带来了巨大挑战。对此,提出一种新型的数据驱动的用户需求响应行为建模方法,采用不涉及用户隐私的环境气象数据、电价数据及用户聚合体的历史互动数据,结合深度长短时记忆(long short-term memory,LSTM)网络方法实现了对用户聚合体的复杂响应特征的有效表征,建立了反映用户聚合体差异化需求响应能力的特性封装模型,并将其在零售市场定价场景中进行了应用测试。结果表明,所提出的深度学习封装建模方法能够很好地逼近用户需求响应特性理论值,具有良好的精度,同时能显著降低零售定价迭代出清所需时间,可为复杂用户参与下的电力市场运行提供一定参考。

     

    Abstract: With the advance of the electricity market reform on the electricity selling side, the number of consumers participating in the demand response is increasing. Due to the different characteristics and great differences in response ability of the consumers participating in the interaction, the combination of multiple types of the consumers results in the complex features of high dimension, nonlinear and non-convex in the overall response characteristics, which brings great challenges to the traditional model-driven interaction modeling and pricing optimization strategies. In this paper, a new data-driven modeling method of the consumer demand response behavior is proposed. Using the environmental meteorological data, the electricity price data and the historical interaction data of the consumer aggregates that do not involve their privacy and combined with the deep LSTM network method, the complex response characteristics of the user aggregates can be effectively characterized. A feature encapsulation model is established to reflect the differentiated demand response capabilities of the consumer aggregates, which is tested in the retail market pricing scenario. The results show that the proposed deep learning encapsulation modeling method can better approximate the theoretical value of the user demand response characteristics and has good accuracy. At the same time, it can significantly reduce the time required for iteration clearance of the retail pricing. This proposed method can provide some reference for the operation of power market with complex consumer participation.

     

/

返回文章
返回