田民, 秦岭, 周磊. 少器件数量和低开关管电压应力的ZVS高增益光伏直流模块[J]. 电网技术, 2021, 45(10): 4134-4141. DOI: 10.13335/j.1000-3673.pst.2020.1607
引用本文: 田民, 秦岭, 周磊. 少器件数量和低开关管电压应力的ZVS高增益光伏直流模块[J]. 电网技术, 2021, 45(10): 4134-4141. DOI: 10.13335/j.1000-3673.pst.2020.1607
TIAN Min, QIN Ling, ZHOU Lei. ZVS High Voltage Gain Photovoltaic DC-module With Reduced Number of Components and Lower Voltage Stress[J]. Power System Technology, 2021, 45(10): 4134-4141. DOI: 10.13335/j.1000-3673.pst.2020.1607
Citation: TIAN Min, QIN Ling, ZHOU Lei. ZVS High Voltage Gain Photovoltaic DC-module With Reduced Number of Components and Lower Voltage Stress[J]. Power System Technology, 2021, 45(10): 4134-4141. DOI: 10.13335/j.1000-3673.pst.2020.1607

少器件数量和低开关管电压应力的ZVS高增益光伏直流模块

ZVS High Voltage Gain Photovoltaic DC-module With Reduced Number of Components and Lower Voltage Stress

  • 摘要: 文章提出了一种用于光伏直流模块的低电压应力零电压关断(zero-voltage-switching,ZVS)高增益Boost变换器。该变换器在传统Boost变换器的二极管支路中串入由1个电流双向流通的电感、1个同步整流开关管和2个电容构成的等效电压源,从而使电压增益变为原拓扑的(1+D)倍(D为主开关管占空比),而且减小了功率管和滤波电容的电压应力,并实现了所有开关管的ZVS和二极管的自然关断。分析了所提变换器的工作原理、稳态特性(电压增益、电压应力、电流应力)和软开关实现条件,给出了参数设计方法,并通过一台250W/100kHz实验样机验证了理论分析的正确性。实验表明,该变换器最大效率为97.7%。

     

    Abstract: A zero-voltage-switching (ZVS) high-gain Boost converter with low voltage stress is proposed for the photovoltaic dc-module. The proposed converter is constructed by introducing an equivalent voltage source into the diode branch of the conventional Boost converter. This voltage source is composed of an inductor operated in bidirectional conduction mode, a synchronous rectifier and two capacitors. Hence, the voltage gain increases by (1+D) times (D is the duty cycle of main switch), while the voltage stress on the power components and the filter capacitors are decreased. Moreover, all active switches achieve the ZVS and the diode naturally turning off. In this paper, the working principle, the steady-state characteristics (including voltage gain, voltage stress and current stress) and the soft-switching realization conditions of the proposed converter are analyzed in detail, and then the parameter design is given. The correctness of the theoretical analysis is verified on a 250W/100kHz experimental prototype, which shows the maximum efficiency is up to 97.7%.

     

/

返回文章
返回