崔雪原, 刘晟源, 金伟超, 林振智, 宣玉华, 王海波. 基于APAA和改进DBSCAN算法的户变关系及相位识别方法[J]. 电网技术, 2021, 45(8): 3034-3042. DOI: 10.13335/j.1000-3673.pst.2020.1508
引用本文: 崔雪原, 刘晟源, 金伟超, 林振智, 宣玉华, 王海波. 基于APAA和改进DBSCAN算法的户变关系及相位识别方法[J]. 电网技术, 2021, 45(8): 3034-3042. DOI: 10.13335/j.1000-3673.pst.2020.1508
CUI Xueyuan, LIU Shengyuan, JIN Weichao, LIN Zhenzhi, XUAN Yuhua, WANG Haibo. Consumer-transformer Relationship and Phase Identification Based on APAA and Improved DBSCAN Algorithm[J]. Power System Technology, 2021, 45(8): 3034-3042. DOI: 10.13335/j.1000-3673.pst.2020.1508
Citation: CUI Xueyuan, LIU Shengyuan, JIN Weichao, LIN Zhenzhi, XUAN Yuhua, WANG Haibo. Consumer-transformer Relationship and Phase Identification Based on APAA and Improved DBSCAN Algorithm[J]. Power System Technology, 2021, 45(8): 3034-3042. DOI: 10.13335/j.1000-3673.pst.2020.1508

基于APAA和改进DBSCAN算法的户变关系及相位识别方法

Consumer-transformer Relationship and Phase Identification Based on APAA and Improved DBSCAN Algorithm

  • 摘要: 随着低压台区线路改造升级,台区户变关系以及用户相位信息变动频繁。为解决因排查效率低、更新不及时等造成的户变相位档案错误问题,提出了一种基于电压特征提取和聚类算法的户变关系及相位识别方法。首先采用自适应分段聚合近似(adaptive piecewise aggregate approximation,APAA)方法提取电压曲线特征,然后采用改进DBSCAN (density-based spatial clustering of application with noise)算法识别户变关系不匹配的用户,以及对户变关系正常用户进行相位识别,该改进方法通过自适应确定DBSCAN算法的参数和检验聚类结果中噪声用户的相关性,提高了算法聚类结果的准确度。实际台区算例分析验证了所提方法的准确性。

     

    Abstract: With the upgrade of the feed lines for low-voltage distribution systems, the consumer-transformer relationships and the phase information of customers change frequently. In order to correct the errors of the consumer-transformer relationship and the phase document caused by inefficient checking or untimely updating, a consumer-transformer relationship and phase identification method based on the voltage feature extraction and the clustering algorithm is proposed in this work. Firstly, the adaptive piecewise aggregate approximation (APAA) algorithm is used to extract the features of voltage curves. Secondly, the improved density-based spatial clustering of application with noise (DBSCAN) algorithm is used to detect the unmatched consumer-transformer relationship and identify the phase information of the normal users. The accuracy of the clustering results is boosted by determining the parameters adaptively and testing the correlation of the noise-making users in the improved DBSCAN algorithm. Some actual cases in the low-voltage distribution systems are studied to verify the accuracy of the proposed method.

     

/

返回文章
返回