袁红霞, 张俊, 许沛东, 方舟. 基于图强化学习的电力交通耦合网络快速充电需求引导研究[J]. 电网技术, 2021, 45(3): 979-986. DOI: 10.13335/j.1000-3673.pst.2020.1384
引用本文: 袁红霞, 张俊, 许沛东, 方舟. 基于图强化学习的电力交通耦合网络快速充电需求引导研究[J]. 电网技术, 2021, 45(3): 979-986. DOI: 10.13335/j.1000-3673.pst.2020.1384
YUAN Hongxia, ZHANG Jun, XU Peidong, FANG Zhou. Fast Charging Demand Guidance in Coupled Power-transportation Networks Based on Graph Reinforcement Learning[J]. Power System Technology, 2021, 45(3): 979-986. DOI: 10.13335/j.1000-3673.pst.2020.1384
Citation: YUAN Hongxia, ZHANG Jun, XU Peidong, FANG Zhou. Fast Charging Demand Guidance in Coupled Power-transportation Networks Based on Graph Reinforcement Learning[J]. Power System Technology, 2021, 45(3): 979-986. DOI: 10.13335/j.1000-3673.pst.2020.1384

基于图强化学习的电力交通耦合网络快速充电需求引导研究

Fast Charging Demand Guidance in Coupled Power-transportation Networks Based on Graph Reinforcement Learning

  • 摘要: 为应对大规模电动汽车无序快充给电力交通耦合网络带来的巨大挑战,首先建立了包含车-站-路-网的多目标优化模型,提出了基于请求驱动的快速充电站推荐模式,利用图强化学习算法实现了不规则环境信息的提取及快速充电引导策略的学习,最后基于MATLAB-SUMO-Python联合仿真平台进行了实验。结果表明,所提算法能够在保证路-网指标优化的同时,有效降低电动汽车充电前耗时并提高充电站的服务均衡度,从而保证耦合网络的长期健康稳定运行,所提方法具有良好的优化效果及实时响应能力。

     

    Abstract: The unguided fast charging of the large-scale electric vehicles has brought great challenges to the coupled power-transportation networks. In this paper, a multi-objective optimization model including the electric vehicles, the charging stations, the transportation network, and the power grid is firstly established. Then, a request-driven recommendation model is proposed, and the irregular environment information extraction and fast charging guidance strategy learning are realized based on the graph reinforcement learning algorithm. Finally, some experiments are carried out on MATLAB-SUMO-Python joint simulation platform. The results show that the proposed algorithm can effectively reduce the time cost before charging of EVs and improve the service balance of charging stations, which ensures the optimization of transportation network and power grid and the long-term healthy and stable operation of the coupled networks. The proposed method has good optimization effect and real-time response capability.

     

/

返回文章
返回