戚创创, 王向文. 考虑风向和大气稳定度的海上风电功率短期预测[J]. 电网技术, 2021, 45(7): 2773-2780. DOI: 10.13335/j.1000-3673.pst.2020.1242
引用本文: 戚创创, 王向文. 考虑风向和大气稳定度的海上风电功率短期预测[J]. 电网技术, 2021, 45(7): 2773-2780. DOI: 10.13335/j.1000-3673.pst.2020.1242
QI Chuangchuang, WANG Xiangwen. Short-term Prediction of Offshore Wind Power Considering Wind Direction and Atmospheric Stability[J]. Power System Technology, 2021, 45(7): 2773-2780. DOI: 10.13335/j.1000-3673.pst.2020.1242
Citation: QI Chuangchuang, WANG Xiangwen. Short-term Prediction of Offshore Wind Power Considering Wind Direction and Atmospheric Stability[J]. Power System Technology, 2021, 45(7): 2773-2780. DOI: 10.13335/j.1000-3673.pst.2020.1242

考虑风向和大气稳定度的海上风电功率短期预测

Short-term Prediction of Offshore Wind Power Considering Wind Direction and Atmospheric Stability

  • 摘要: 对于海上风电功率的预测,传统预测模型未计及因风向与大气条件改变引起的输出功率差异。为了提升预测精度,在考虑大气稳定度的同时,根据风向与功率损失构建出功率风向(power-direction,Pd)模型,并在此基础上提出基于编码–解码(Encoder-decoder)框架的海上风电功率预测方法。该方法可根据Pd模型更新尾流效应损失,并有效平抑预测功率波动,区分不同大气层结稳定度下的尾流效应。首先,通过长短期记忆神经网络(long-short term memory,LSTM)等预测模型验证大气稳定度及Pd模型的有效性,然后使用Encoder-decoder对实际海上风电场进行风电功率预测。实验结果表明,考虑大气稳定度并使用Pd模型的Encoder-decoder方法,其均方根误差较单一Encoder-decoder预测方法降低了2.39%。

     

    Abstract: For the prediction of offshore wind power, the traditional wind power prediction models seldom take into account the difference in output power caused by the changes in wind directions and atmospheric conditions. In order to improve the prediction accuracy, this paper constructs a power-direction model based on wind directions and power losses while considering the atmospheric stability, and proposes an offshore wind power prediction method based on the encoder-decoder framework. This method can update the wake effect losses according to the Pd model, effectively suppress the predicted power fluctuation, and distinguish the wake effects under different atmospheric stratification stabilities. First, the prediction models like the long-short term memory (LSTM) neural network are used to verify the atmospheric stability and the effectiveness of the Pd model. Then, the encoder-decoder is used to predict the wind power of the actual offshore wind farm. The experimental results show that the encoder-decoder method, which considers the atmospheric stability and uses the Pd model, has a 2.39% lower root mean square error than that of a single encoder-decoder prediction method.

     

/

返回文章
返回