王增平, 赵兵, 贾欣, 高欣, 李晓兵. 基于差分分解和误差补偿的短期电力负荷预测方法[J]. 电网技术, 2021, 45(7): 2560-2568. DOI: 10.13335/j.1000-3673.pst.2020.1159
引用本文: 王增平, 赵兵, 贾欣, 高欣, 李晓兵. 基于差分分解和误差补偿的短期电力负荷预测方法[J]. 电网技术, 2021, 45(7): 2560-2568. DOI: 10.13335/j.1000-3673.pst.2020.1159
WANG Zengping, ZHAO Bing, JIA Xin, GAO Xin, LI Xiaobing. Short-term Power Load Forecasting Method Based on Difference Decomposition and Error Compensation[J]. Power System Technology, 2021, 45(7): 2560-2568. DOI: 10.13335/j.1000-3673.pst.2020.1159
Citation: WANG Zengping, ZHAO Bing, JIA Xin, GAO Xin, LI Xiaobing. Short-term Power Load Forecasting Method Based on Difference Decomposition and Error Compensation[J]. Power System Technology, 2021, 45(7): 2560-2568. DOI: 10.13335/j.1000-3673.pst.2020.1159

基于差分分解和误差补偿的短期电力负荷预测方法

Short-term Power Load Forecasting Method Based on Difference Decomposition and Error Compensation

  • 摘要: 基于序列分解的方法能够提高短期电力负荷预测精度,但会带来误差的积累。同时,现有方法忽略了历史预测误差与当前预测结果的相关关系。提出了一种基于差分分解和误差补偿的短期电力负荷预测方法(differential decomposition - error compensation - gated recurrent unit,DD-EC-GRU)。首先,对原始负荷序列进行一阶差分,将负荷的预测问题转化为负荷变化量的预测问题。基于此,在一组实际预测负荷序列的基础上引入多组辅助预测负荷序列,应用门控循环单元(gated recurrent unit,GRU)构建多目标迭代预测网络。最后综合考虑各序列迭代预测误差的变化趋势与平稳性,构建基于序列相似度和人工神经网络集成模型的误差补偿网络,提升预测精度。在3个实际负荷数据集上对DD-EC-GRU各环节有效性进行验证,并与多种主流算法对比,结果表明本文所提方法有较高的预测精度和较强的适应能力。

     

    Abstract: The power load forecasting method based on sequence decomposition can improve its forecasting accuracy, but it also brings error accumulation. At the same time, the existing methods ignore the correlation between the historical forecast errors and the current forecast results. A short-term load forecasting method based on differential decomposition and error compensation (DD-EC-GRU) is proposed. First, the first-order difference of the original load sequence is used as an input feature to transform the load forecasting problem into a load's variation forecasting problem. Based on this, multiple sets of fake load sequences are introduced on the basis of a set of actual load sequences. The gated recurrent unit is used to construct a multi-objective iterative prediction network. Finally, comprehensively considering the changing trend and stationarity of the iterative prediction errors of each sequence, an error compensation network based on the sequence similarity and artificial neural network integrated model is constructed to improve the prediction accuracy. The effectiveness of each components of DD-EC-GRU is verified on three actual load power datasets. Compared with various popular algorithms, the DD-EC-GRU has higher prediction accuracy and stronger adaptability.

     

/

返回文章
返回