王新迎, 李烨, 董骁翀, 王昊天, 孙英云. 基于变分自编码器的主动配电网多源–荷场景生成方法[J]. 电网技术, 2021, 45(8): 2962-2969. DOI: 10.13335/j.1000-3673.pst.2020.0903
引用本文: 王新迎, 李烨, 董骁翀, 王昊天, 孙英云. 基于变分自编码器的主动配电网多源–荷场景生成方法[J]. 电网技术, 2021, 45(8): 2962-2969. DOI: 10.13335/j.1000-3673.pst.2020.0903
WANG Xinying, LI Ye, DONG Xiaochong, WANG Haotian, SUN Yingyun. Multi-source-load Scenario Generation of Active Distribution Network Based on Variational Autoencoder[J]. Power System Technology, 2021, 45(8): 2962-2969. DOI: 10.13335/j.1000-3673.pst.2020.0903
Citation: WANG Xinying, LI Ye, DONG Xiaochong, WANG Haotian, SUN Yingyun. Multi-source-load Scenario Generation of Active Distribution Network Based on Variational Autoencoder[J]. Power System Technology, 2021, 45(8): 2962-2969. DOI: 10.13335/j.1000-3673.pst.2020.0903

基于变分自编码器的主动配电网多源–荷场景生成方法

Multi-source-load Scenario Generation of Active Distribution Network Based on Variational Autoencoder

  • 摘要: 随着主动配电网中可再生能源渗透率的不断提高,其出力不确定性为主动配电网的规划、调度带来巨大挑战。针对该问题,提出一种基于变分自编码器的主动配电网多源–荷场景生成方法。该方法在传统变分自编码器结构中无监督地融入标签值使编码网络具有条件拟合的能力,并且设计了合理的编码网络与解码网络结构,使用图神经网络与时序卷积网络分别提取非欧氏相关性特征与时序相关性特征。算例使用实测多源–荷数据对所提方法进行仿真验证,结果表明改进变分自编码器能精确地还原场景并有效描述多源–荷场景之间的相关性,可对数据样本在无监督学习下生成标签值并生成对应同类型场景。

     

    Abstract: With the increasing penetration of renewable energy in active distribution network, how to effectively describe the uncertainty of the output of the renewable energy is a great challenge for active distribution network's planning and dispatching. For this problem, a multi-source-load scenario generation method of active distribution network based on variational autoencoder (VAE) is proposed. The label value is added to the traditional VAE unsupervised structure so that it has the ability of condition fitting, and an encoder and decoder network structure are designed using the graph neural network and the temporal convolutional network to extract the non-Euclidean and the temporal correlation characteristics respectively. This paper tests the proposed method with multi-source-load data, the results of which show that the proposed model can accurately restore the scenario, effectively describe the correlation between the multi-source-load scenarios, and the model can tag the data sample with unsupervised learning, then generate the same type of scenarios with the label value.

     

/

返回文章
返回