俞文帅, 张晓华, 卫志农, 孙国强, 臧海祥, 杨滢璇, 韩月. 基于深度神经网络的电力系统快速状态估计[J]. 电网技术, 2021, 45(7): 2551-2559. DOI: 10.13335/j.1000-3673.pst.2020.0276
引用本文: 俞文帅, 张晓华, 卫志农, 孙国强, 臧海祥, 杨滢璇, 韩月. 基于深度神经网络的电力系统快速状态估计[J]. 电网技术, 2021, 45(7): 2551-2559. DOI: 10.13335/j.1000-3673.pst.2020.0276
YU Wenshuai, ZHANG Xiaohua, WEI Zhinong, SUN Guoqiang, ZANG Haixiang, YANG Yingxuan, HAN Yue. Fast State Estimation for Power System Based on Deep Neural Network[J]. Power System Technology, 2021, 45(7): 2551-2559. DOI: 10.13335/j.1000-3673.pst.2020.0276
Citation: YU Wenshuai, ZHANG Xiaohua, WEI Zhinong, SUN Guoqiang, ZANG Haixiang, YANG Yingxuan, HAN Yue. Fast State Estimation for Power System Based on Deep Neural Network[J]. Power System Technology, 2021, 45(7): 2551-2559. DOI: 10.13335/j.1000-3673.pst.2020.0276

基于深度神经网络的电力系统快速状态估计

Fast State Estimation for Power System Based on Deep Neural Network

  • 摘要: 随着现代电力系统的迅猛发展,电网结构和运行方式日益复杂,对状态估计的实时性和准确性也提出了更高的要求。为此,该文提出一种基于深度神经网络的电力系统快速状态估计,通过相关性分析筛选出该状态估计模型的输入量测集,进一步利用海量历史数据建立基于深度神经网络的状态估计模型。当电力系统的实时量测更新时,将强相关量测输入已建立的状态估计模型中快速获得系统状态的估计结果。通过在IEEE标准系统和某实际省网进行算例仿真表明,所提方法的估计精度和鲁棒性均优于传统加权最小二乘(weighted least square,WLS)和加权最小绝对值估计(weighted least absolute value,WLAV);并且该方法的在线计算时间受系统规模影响较小,由实际省网的仿真结果可知,其计算效率较WLS和WLAV分别提升1.43和27.2倍。

     

    Abstract: With the rapid development of modern power system, the structure and operation mode of power system become more and more complex, and the real-time and accuracy of state estimation are also put forward. Therefore, this paper proposes a fast state estimation for power system based on deep neural network. This method selects the input measurement set of the state estimation model through correlation analysis, and then establishes the state estimation model based on deep neural network by using massive historical data. When the real-time measurement of the power system is updated, the strong correlation measurement is input into the established state estimation model to obtain the state estimation result quickly. The simulation results of an IEEE standard system and a practical provincial power grid shows that the estimation accuracy and robustness of this method are better than traditional Weighted Least Square (WLS) estimation and Weighted Least Absolute Value (WLAV) estimation. Moreover, system scale less affects the online computing time of this method. In the simulation of a practical provincial power grid, the calculation efficiency of this method is 1.43 and 27.2 times higher than that of traditional WLS estimation and WLAV estimation respectively.

     

/

返回文章
返回