孙慧, 李喆, 江一, 赵航航, 顾超越, 史晋涛, 盛戈皞, 江秀臣. 基于场景建模的电力巡检异物检测样本扩充方法[J]. 电网技术, 2021, 45(3): 1175-1180. DOI: 10.13335/j.1000-3673.pst.2019.2296
引用本文: 孙慧, 李喆, 江一, 赵航航, 顾超越, 史晋涛, 盛戈皞, 江秀臣. 基于场景建模的电力巡检异物检测样本扩充方法[J]. 电网技术, 2021, 45(3): 1175-1180. DOI: 10.13335/j.1000-3673.pst.2019.2296
SUN Hui, LI Zhe, JIANG Yi, ZHAO Hanghang, GU Chaoyue, SHI Jintao, SHENG Gehao, JIANG Xiuchen. Data Augmentation of Foreign Object Detection Based on Context Modeling in Power Inspection[J]. Power System Technology, 2021, 45(3): 1175-1180. DOI: 10.13335/j.1000-3673.pst.2019.2296
Citation: SUN Hui, LI Zhe, JIANG Yi, ZHAO Hanghang, GU Chaoyue, SHI Jintao, SHENG Gehao, JIANG Xiuchen. Data Augmentation of Foreign Object Detection Based on Context Modeling in Power Inspection[J]. Power System Technology, 2021, 45(3): 1175-1180. DOI: 10.13335/j.1000-3673.pst.2019.2296

基于场景建模的电力巡检异物检测样本扩充方法

Data Augmentation of Foreign Object Detection Based on Context Modeling in Power Inspection

  • 摘要: 利用深度卷积神经网络来进行图像目标检测是电力巡检异物检测的常用手段。训练神经网络需要大量样本,但电力行业存在着图片难以收集导致训练样本不足的情况。为方便目标检测神经网络的训练、提升目标检测模型的识别性能,利用一种基于已有样本的场景建模方法,自动生成大量符合实际电力场景的图片,以扩充样本。该方法利用卷积神经网络实现场景建模,并采用泊松融合进行图片合成,同时加入尺寸变换、图像旋转、图像滤波等数字图像处理方法。通过实例验证,该样本扩充方法可以实现扩充目标检测训练所要求的图像样本, 也可以在样本完全缺失的情况下快速生成一定量的样本,提高目标检测模型的性能。

     

    Abstract: The use of deep convolutional neural networks for object detection is a common method for foreign object detection in power inspection. Training a neural network requires a large number of training examples. However, it is difficult to collect pictures of the power scenes so the training examples become insufficient. In order to facilitate the training of neural networks and improve the accuracy of object detectors, this paper suggests an approach of automatically generating a large number of images that match the actual scenes by using a context modeling with existing pictures. This approach builds a context model in the convolutional neural network, synthesizes the images with Poisson blending, and combines some other methods such as scaling, rotating and filtering in the digital image processing. Example analysis in this paper verifies the data augmentation approach can augment the training examples to be used in the object detection and to generate a certain amount of images where there is a lack of data, which will improve the accuracy of object detectors.

     

/

返回文章
返回