陈张宇, 刘东, 刘浩文, 尤宏亮, 吴晓飞. 基于精细化需求响应的虚拟电厂优化调度[J]. 电网技术, 2021, 45(7): 2542-2550. DOI: 10.13335/j.1000-3673.pst.2019.2019
引用本文: 陈张宇, 刘东, 刘浩文, 尤宏亮, 吴晓飞. 基于精细化需求响应的虚拟电厂优化调度[J]. 电网技术, 2021, 45(7): 2542-2550. DOI: 10.13335/j.1000-3673.pst.2019.2019
CHEN Zhangyu, LIU Dong, LIU Haowen, YOU Hongliang, WU Xiaofei. Optimal Dispatching of Virtual Power Plant Based on Refined Demand Response[J]. Power System Technology, 2021, 45(7): 2542-2550. DOI: 10.13335/j.1000-3673.pst.2019.2019
Citation: CHEN Zhangyu, LIU Dong, LIU Haowen, YOU Hongliang, WU Xiaofei. Optimal Dispatching of Virtual Power Plant Based on Refined Demand Response[J]. Power System Technology, 2021, 45(7): 2542-2550. DOI: 10.13335/j.1000-3673.pst.2019.2019

基于精细化需求响应的虚拟电厂优化调度

Optimal Dispatching of Virtual Power Plant Based on Refined Demand Response

  • 摘要: 在能源互联网建设背景下,虚拟电厂如何利用居民用户的需求响应能力来充分发挥分布式发电、分布式储能、微电网等资源的绿色价值和灵活价值已成为研究重点。然而居民用户的需求响应难以量化,不同用户在不同场景下的响应趋势大相径庭,导致虚拟电厂很难将居民用户的需求响应能力利用起来。针对这一问题,首先,构建虚拟电厂精细化需求响应模型,其次,为正确反映不同用户的需求响应特征,构建2个长短期记忆(long short-term memory,LSTM)网络计算需求响应效益系数,在此基础上将精细化需求响应模型与虚拟电厂优化调度模型相结合并求解,得到最优的调度结果。仿真实验表明,所建立的需求响应系数能正确地反应用户的需求响应倾向,利用精细化需求响应模型虚拟电厂能充分发挥用户侧需求响应,并提高整体经济性。

     

    Abstract: As energy internet is constantly developing, it has become a study focus for a virtual power plant to give full play of the green value and the flexibility of distributed generation, distributed energy storage, micro-grid and other resources by using the users' demand response (DR) However, it is difficult to quantify the DR intentions of diverse users in various scenarios, which makes it a tough job for virtual power plants to use the users' DR. To solve this problem, firstly this paper constructs an accurate demand response model for virtual power plants. Secondly, in order to correctly reflect the demand response characteristics of different users, two LSTM networks are built to calculate the benefit coefficients of the demand response. On this basis, by combining and solving the accurate demand response model and the virtual power plant optimal dispatching model the optimal dispatching results are obtained. The simulation results show that the demand response coefficients established in this paper can correctly reflect the user's demand response intentions. The accurate demand response model can make the full use of the user side demand response and improve the overall economy of the virtual power plant.

     

/

返回文章
返回