王凯, 张旭, 张倩宜, 徐天一, 徐志强. 电力物联网边缘计算依赖型任务卸载的低时延调度技术[J]. 电力信息与通信技术, 2024, 22(6): 73-80. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.06.10
引用本文: 王凯, 张旭, 张倩宜, 徐天一, 徐志强. 电力物联网边缘计算依赖型任务卸载的低时延调度技术[J]. 电力信息与通信技术, 2024, 22(6): 73-80. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.06.10
WANG Kai, ZHANG Xu, ZHANG Qianyi, XU Tianyi, XU Zhiqiang. Low Latency Scheduling Techniques for Power IoT Edge Computing Dependent Tasks[J]. Electric Power Information and Communication Technology, 2024, 22(6): 73-80. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.06.10
Citation: WANG Kai, ZHANG Xu, ZHANG Qianyi, XU Tianyi, XU Zhiqiang. Low Latency Scheduling Techniques for Power IoT Edge Computing Dependent Tasks[J]. Electric Power Information and Communication Technology, 2024, 22(6): 73-80. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.06.10

电力物联网边缘计算依赖型任务卸载的低时延调度技术

Low Latency Scheduling Techniques for Power IoT Edge Computing Dependent Tasks

  • 摘要: 现有电力物联网任务调度技术难以满足任务的低时延和实时性要求,且未考虑到电力物联网任务之间的内部依赖性。针对该问题,融合深度强化学习任务卸载模型和Sequence-to-Sequence神经网络,使用有向无环图表示任务及依赖关系,引入ε-贪婪探索机制和优先经验回放来鼓励探索和提高模型训练效率,构建基于深度强化学习的电力物联网任务卸载模型。通过与其他任务卸载算法进行对比,所提模型的任务平均处理时延显著优于其他算法,验证在电力物联网依赖型任务低时延调度方面的优越性。

     

    Abstract: Existing power IoT task scheduling techniques are difficult to meet the low-latency and real-time requirements of tasks and do not take into account the internal dependencies between power IoT tasks. To address this problem, a deep reinforcement learning-based task offloading model for power IoT is constructed by integrating the DRLTO task offloading model and Sequence-to-Sequence neural network, using a directed acyclic graph to represent the tasks and their dependencies, and introducing the ε-greedy exploration mechanism and prioritized experience replay to encourage exploration and improve the model training efficiency. By comparing with other task offloading algorithms, the average task processing latency of the proposed model in this paper significantly outperforms other algorithms, verifying the superiority in low-latency scheduling of power IoT-dependent tasks.

     

/

返回文章
返回