鲍兴川, 刘世栋, 张宁. 基于改进蚁群算法的算力灵活迁移优化算法[J]. 电力信息与通信技术, 2024, 22(3): 1-8. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.03.01
引用本文: 鲍兴川, 刘世栋, 张宁. 基于改进蚁群算法的算力灵活迁移优化算法[J]. 电力信息与通信技术, 2024, 22(3): 1-8. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.03.01
BAO Xingchuan, LIU Shidong, ZHANG Ning. A Flexible Migration Algorithm for Arithmetic Power Based on Improved Ant Colony Algorithm[J]. Electric Power Information and Communication Technology, 2024, 22(3): 1-8. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.03.01
Citation: BAO Xingchuan, LIU Shidong, ZHANG Ning. A Flexible Migration Algorithm for Arithmetic Power Based on Improved Ant Colony Algorithm[J]. Electric Power Information and Communication Technology, 2024, 22(3): 1-8. DOI: 10.16543/j.2095-641x.electric.power.ict.2024.03.01

基于改进蚁群算法的算力灵活迁移优化算法

A Flexible Migration Algorithm for Arithmetic Power Based on Improved Ant Colony Algorithm

  • 摘要: 针对现有云计算环境下国网数据中心资源调度存在的调度效率低、能源消耗高等问题,文章提出了一种基于改进蚁群算法的算力灵活迁移优化算法。首先构建国网云数据中心的算力迁移模型,对数据中心的资源调度能耗进行建模。然后通过引入细菌觅食算法改进基本蚁群算法的信息素初始化,并重新设计了启发函数和信息素挥发因子。仿真实验结果表明,与现有模型相比,文章的算法能够求出更优的算力资源调度方案,在减小任务完成时间的同时降低了国网数据中心36.6%的能耗。

     

    Abstract: To solve the problems of low scheduling efficiency and high energy consumption in State Grid data center resource allocation in existing cloud computing environments, this paper proposes a flexible migration algorithm for arithmetic power based on improved ant colony algorithm. Firstly, a computational migration model for State Grid cloud data centers is constructed to model the energy consumption of resource scheduling in data centers. Subsequently, by integrating the bacterial foraging optimization algorithm, we enhanced the initial pheromone distribution in the fundamental ant colony optimization algorithm and reformulated both the heuristic function and pheromone evaporation factor. Simulation outcomes demonstrate that, compared with existing models, the algorithm proposed in this paper can find a more optimal scheduling solution for computing resources. This algorithm not only abbreviates the task execution duration but also culminates in a substantial 36.6% reduction in energy consumption in the State Grid data centers.

     

/

返回文章
返回