薛建立, 赵轶彦, 康振宁, 高嘉一, 胡鹏涛, 樊沛林. 孤岛模式下VSG改进型并联控制策略研究[J]. 电力信息与通信技术, 2025, 23(3): 72-79. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.03.10
引用本文: 薛建立, 赵轶彦, 康振宁, 高嘉一, 胡鹏涛, 樊沛林. 孤岛模式下VSG改进型并联控制策略研究[J]. 电力信息与通信技术, 2025, 23(3): 72-79. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.03.10
XUE Jianli, ZHAO Yiyan, KANG Zhenning, GAO Jiayi, HU Pengtao, FAN Peilin. Research on Improved Parallel Control Strategy for Virtual Synchronous Generators in Island Mode[J]. Electric Power Information and Communication Technology, 2025, 23(3): 72-79. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.03.10
Citation: XUE Jianli, ZHAO Yiyan, KANG Zhenning, GAO Jiayi, HU Pengtao, FAN Peilin. Research on Improved Parallel Control Strategy for Virtual Synchronous Generators in Island Mode[J]. Electric Power Information and Communication Technology, 2025, 23(3): 72-79. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.03.10

孤岛模式下VSG改进型并联控制策略研究

Research on Improved Parallel Control Strategy for Virtual Synchronous Generators in Island Mode

  • 摘要: 在应对高比例电力电子设备接入挑战下,孤岛微电网系统中虚拟同步发电机的并联运行问题成为焦点。由于虚拟同步发电机(virtual synchronous generators,VSG)的并联运行需要复杂的负载分担协调,对系统稳定性提出更为严格的要求,因此系统控制策略显得尤为复杂。为解决这一问题,文章引入自抗扰控制(active disturbance rejection control,ADRC)技术,将其与基于P-fQ-V下垂控制的算法相融合,实现更为准确的电压偏差控制。整合的控制方案赋予VSG更大的灵活性,使其在保持系统动态稳定性的同时更加适应负载分担的变化。通过仿真结果验证,新的控制策略使VSG在孤岛系统中能够正常运行,且在负载变化时实现并联运行,而不对系统的动态稳定性产生负面影响。所提方法为解决VSG在孤岛微电网系统中的并联运行问题提供智能和适应性的解决途径,为系统的稳定性和可靠性提供了更为全面的保障。

     

    Abstract: In addressing the challenges posed by the high proportion of power electronic devices, this study focuses on the parallel operation issues of virtual synchronous generators (VSG) in isolated microgrid systems. The parallel operation of VSG involves intricate coordination of load sharing, placing more stringent demands on the system's stability and consequently complicating the control strategy. To tackle this issue, the paper innovatively introduces the active disturbance rejection control (ADRC) technology, integrating it with algorithms based on P-f and Q-V droop control to achieve more precise voltage deviation control. This integrated control scheme endows VSG with greater flexibility, enabling them to adapt to variations in load sharing while maintaining the dynamic stability of the system. Simulation results validate that the new control strategy enables VSG to operate seamlessly in isolated systems, facilitating parallel operation during load changes without adversely affecting the dynamic stability of the system. This innovative approach provides an intelligent and adaptive solution to the parallel operation challenges of VSG in isolated microgrid systems, offering a comprehensive safeguard for the stability and reliability of the system.

     

/

返回文章
返回