马笑天, 孙冲, 王维, 赵瑞峰, 陈萍, 吴彬彬. 考虑气象及特殊事件影响的代理购电电量预测研究[J]. 电力信息与通信技术, 2025, 23(3): 25-32. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.03.04
引用本文: 马笑天, 孙冲, 王维, 赵瑞峰, 陈萍, 吴彬彬. 考虑气象及特殊事件影响的代理购电电量预测研究[J]. 电力信息与通信技术, 2025, 23(3): 25-32. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.03.04
MA Xiaotian, SUN Chong, WANG Wei, ZHAO Ruifeng, CHEN Ping, WU Binbin. Research on the Forecasting of Proxy Electricity Purchasing Considering the Impact of Meteorological and Special Events[J]. Electric Power Information and Communication Technology, 2025, 23(3): 25-32. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.03.04
Citation: MA Xiaotian, SUN Chong, WANG Wei, ZHAO Ruifeng, CHEN Ping, WU Binbin. Research on the Forecasting of Proxy Electricity Purchasing Considering the Impact of Meteorological and Special Events[J]. Electric Power Information and Communication Technology, 2025, 23(3): 25-32. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.03.04

考虑气象及特殊事件影响的代理购电电量预测研究

Research on the Forecasting of Proxy Electricity Purchasing Considering the Impact of Meteorological and Special Events

  • 摘要: 文章研究探讨代理购电电量预测过程中,如何考量气象因素和特殊事件的影响。通过量化分析气象因素与代理购电电量的关系,以及特殊事件对代理购电的影响,建立了一种综合预测模型。所提模型采用气象相关性分析和温度累积效应,同时考虑重大事件、重要活动、节假日等对代理购电的影响,更准确地预测代理购电电量。研究结果表明,综合考量多种因素能够显著提高预测精度,为电力市场参与者提供决策支持。

     

    Abstract: This paper explores the consideration of meteorological factors and special events in the forecasting of electricity purchasing volume by agents. By quantifying the relationship between meteorological factors and electricity purchasing volume by agents, as well as the impact of special events on electricity purchasing by agents, a comprehensive prediction model is established. This model uses meteorological correlation analysis and temperature cumulative effect, and considers the impact of major events, important activities, holidays, etc. on electricity purchasing by agents, aiming to predict electricity purchasing volume by agents more accurately. The research results show that considering multiple factors comprehensively can significantly improve the prediction accuracy, providing decision support for power market participants.

     

/

返回文章
返回