赵伟博, 范旭东, 孙胜博, 李闯, 周颖, 李德智, 马笑天, 郝颖. 电动汽车充电负荷场景化分析与超短期预测方法[J]. 电力信息与通信技术, 2025, 23(2): 28-37. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.02.04
引用本文: 赵伟博, 范旭东, 孙胜博, 李闯, 周颖, 李德智, 马笑天, 郝颖. 电动汽车充电负荷场景化分析与超短期预测方法[J]. 电力信息与通信技术, 2025, 23(2): 28-37. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.02.04
ZHAO Weibo, FAN Xudong, SUN Shengbo, LI Chuang, ZHOU Ying, LI Dezhi, MA Xiaotian, HAO Ying. A Scenario-based Analysis and Ultra-short-term Forecasting Method for Electric Vehicle Charging Load[J]. Electric Power Information and Communication Technology, 2025, 23(2): 28-37. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.02.04
Citation: ZHAO Weibo, FAN Xudong, SUN Shengbo, LI Chuang, ZHOU Ying, LI Dezhi, MA Xiaotian, HAO Ying. A Scenario-based Analysis and Ultra-short-term Forecasting Method for Electric Vehicle Charging Load[J]. Electric Power Information and Communication Technology, 2025, 23(2): 28-37. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.02.04

电动汽车充电负荷场景化分析与超短期预测方法

A Scenario-based Analysis and Ultra-short-term Forecasting Method for Electric Vehicle Charging Load

  • 摘要: 为更好地挖掘电动汽车充电负荷的时空特征,提高充电负荷预测精度,文章结合聚类算法和深度学习算法,提出一种多场景下电动汽车负荷超短期预测方法。首先,根据居民出行习惯,通过聚类算法分析电动汽车充电数据的内在分布特性,并结合电动汽车用户行为构建不同充电场景。随后,对影响负荷的多维因素进行相关性分析,得出预测模型的最佳输入组合。为了充分捕捉这些输入特征在时间上的关联关系,基于长短期记忆(long short-term memory,LSTM)对Transformer算法进行改进,并利用其为每个场景建立充电负荷预测模型。最后,对各场景的预测结果进行整合,得到充电负荷的整体预测结果。通过对石家庄市电动汽车实际充电数据的实验,验证文章方法的有效性,并在不同时间尺度和输入组合下证实所提方法的优越性。

     

    Abstract: In order to better mine the spatiotemporal characteristics of electric vehicle (EV) charging load and improve the accuracy of charging load prediction, this paper combines clustering algorithms and deep learning algorithms to propose a multi-scenario short-term forecasting method for EV charging load. Initially, based on residents' travel habits, the intrinsic distribution characteristics of EV charging data are analyzed through clustering algorithms, and different charging scenarios are constructed in conjunction with EV user behavior. Subsequently, a correlation analysis of multi-dimensional factors affecting the load is conducted to determine the optimal input combination for the prediction model. To fully capture the temporal associations of these input features, the Transformer algorithm is enhanced with long short-term memory (LSTM), and utilized to establish a charging load prediction model for each scenario. Finally, the prediction results of each scenario are integrated to obtain the overall forecast of the charging load. Experiments with actual EV charging data from Shijiazhuang city validate the effectiveness of the proposed method and confirm its superiority under different time scales and input combinations.

     

/

返回文章
返回