尼俊红, 王畅. 基于改进鲸鱼优化算法与残差修正的短期电量预测[J]. 电力信息与通信技术, 2025, 23(2): 18-27. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.02.03
引用本文: 尼俊红, 王畅. 基于改进鲸鱼优化算法与残差修正的短期电量预测[J]. 电力信息与通信技术, 2025, 23(2): 18-27. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.02.03
NI Junhong, WANG Chang. Short Term Electricity Prediction Based on Improved Whale Optimization Algorithm and Residual Correction[J]. Electric Power Information and Communication Technology, 2025, 23(2): 18-27. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.02.03
Citation: NI Junhong, WANG Chang. Short Term Electricity Prediction Based on Improved Whale Optimization Algorithm and Residual Correction[J]. Electric Power Information and Communication Technology, 2025, 23(2): 18-27. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.02.03

基于改进鲸鱼优化算法与残差修正的短期电量预测

Short Term Electricity Prediction Based on Improved Whale Optimization Algorithm and Residual Correction

  • 摘要: 随着新型清洁能源的大力发展和电力市场改革的进行,电量预测在电力企业生产、运营中的作用越来越重要。为了实现电量数据精准预测,文章提出了一种改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)的变分模态分解(variational mode decomposition,VMD)结合极限梯度提升算法(extreme gradient boosting,XGBoost)修正的差分自回归移动平均(auto regressive integrated moving average,ARIMA)的组合短期电量预测模型。首先,通过引入非线性因子、自适应惯性权重和扰动控制因子改进鲸鱼优化算法,提高其求解能力和搜索能力,以此对VMD的参数寻优;其次,利用寻优确定参数的VMD对电量数据进行分解,降低数据波动性,便于预测模型学习;最后,针对分解分量构建ARIMA-XGBoost电量预测模型,将预测结果重构得到最终预测值。实验结果表明,所提模型的预测评价指标均优于对比模型,对称平均绝对百分比误差相比最小二乘支持向量回归和随机森林回归分别下降了2.46%和1.55%,验证了所提模型在电量预测方面具有更高的准确度。

     

    Abstract: With the vigorous development of new clean energy sources and the ongoing reform of the electricity market, electricity prediction has become increasingly important in the production and operation of power companies. To achieve precise electricity prediction, this paper proposes a combined short-term electricity prediction model. The model integrates an improved whale optimization algorithm (IWOA) with variational mode decomposition (VMD) and extreme gradient boosting (XGBoost)-corrected autoregressive integrated moving average (ARIMA). Firstly, the whale optimization algorithm is improved by incorporating nonlinear factors, adaptive inertia weights, and perturbation control factors to enhance its solving and search capabilities for optimizing VMD parameters. Secondly, the VMD with optimized parameter selection is used to decompose the power data, reduce data volatility and facilitate the learning process of the prediction model. Finally, an ARIMA-XGBoost power prediction model is constructed for the decomposed components, and the final prediction values are obtained by reconstructing the prediction results. Experimental results show that the proposed model outperforms the comparison models in terms of prediction evaluation metrics. The symmetric mean absolute percentage error decreased by 2.46% and 1.55% compared to least squares support vector regression and random forest regression, respectively, validating the higher accuracy of the proposed model in electricity prediction.

     

/

返回文章
返回