刘洋, 白雪峰, 陈宋宋, 高际惟, 赵波, 胡长斌. 基于双层优化的度夏负荷预测模型[J]. 电力信息与通信技术, 2025, 23(2): 11-17. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.02.02
引用本文: 刘洋, 白雪峰, 陈宋宋, 高际惟, 赵波, 胡长斌. 基于双层优化的度夏负荷预测模型[J]. 电力信息与通信技术, 2025, 23(2): 11-17. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.02.02
LIU Yang, BAI Xuefeng, CHEN Songsong, GAO Jiwei, ZHAO Bo, HU Changbin. Summer Load Forecasting Model Based on Two-layer Optimization[J]. Electric Power Information and Communication Technology, 2025, 23(2): 11-17. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.02.02
Citation: LIU Yang, BAI Xuefeng, CHEN Songsong, GAO Jiwei, ZHAO Bo, HU Changbin. Summer Load Forecasting Model Based on Two-layer Optimization[J]. Electric Power Information and Communication Technology, 2025, 23(2): 11-17. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.02.02

基于双层优化的度夏负荷预测模型

Summer Load Forecasting Model Based on Two-layer Optimization

  • 摘要: 随着度夏期间极端高温频发,负荷近年来大幅快速增长,度夏负荷精准预测作为支撑电力保供、电网稳定运行的重要环节,对其预测准确率的要求逐步上升。目前的预测算法对负荷快速攀升跟踪不及时,预测结果远低于实际值。因此,文章提出了一种双层优化的度夏负荷预测模型,采用差分进化算法在内层对LightGBM模型的超参数进行寻优,同时在外层对年度增长系数进行优化,降低历史低负荷影响。选取国网2021—2023年每年度夏期间负荷数据进行算例验证,预测平均绝对百分比误差较LightGBM单模型下降了1.82%,证明了该预测模型的有效性与准确性。

     

    Abstract: With the frequent occurrence of extreme high temperatures during the summer, the loads have been growing dramatically and rapidly in recent years. As an important link to support the supply of electricity and the stable operation of power grids, the requirements for the accuracy of summer load forecasting have gradually risen. The current prediction algorithms are often not timely in tracking the rapid increase of load, and the prediction results are much lower than the actual value. Therefore, this paper proposes a two-layer optimized summer load forecasting model, which adopts a differential evolution algorithm to optimize the hyperparameters of LightGBM model in the inner layer, and optimizes the annual growth coefficients in the outer layer to reduce the impact of historical low load. The load data of the State Grid during the summer period of each year from 2021 to 2023 are selected for example verification, and the average absolute percentage error of prediction decreases by 1.82% compared with that of the LightGBM single model, which proves the validity and accuracy of the prediction model.

     

/

返回文章
返回