李世豪, 曾锃, 缪巍巍, 夏元轶, 杨君中, 沈鹏. 知识数据融合的电力物联智能终端故障分类广义集成学习方法[J]. 电力信息与通信技术, 2025, 1(1): 44-53. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.01.06
引用本文: 李世豪, 曾锃, 缪巍巍, 夏元轶, 杨君中, 沈鹏. 知识数据融合的电力物联智能终端故障分类广义集成学习方法[J]. 电力信息与通信技术, 2025, 1(1): 44-53. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.01.06
LI Shihao, ZENG Zeng, MIAO Weiwei, XIA Yuanyi, YANG Junzhong, SHEN Peng. Generalized Ensemble Learning Method for Fault Classification of Power Intelligent IoT Terminals Based on Knowledge Data Fusion[J]. Electric Power Information and Communication Technology, 2025, 1(1): 44-53. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.01.06
Citation: LI Shihao, ZENG Zeng, MIAO Weiwei, XIA Yuanyi, YANG Junzhong, SHEN Peng. Generalized Ensemble Learning Method for Fault Classification of Power Intelligent IoT Terminals Based on Knowledge Data Fusion[J]. Electric Power Information and Communication Technology, 2025, 1(1): 44-53. DOI: 10.16543/j.2095-641x.electric.power.ict.2025.01.06

知识数据融合的电力物联智能终端故障分类广义集成学习方法

Generalized Ensemble Learning Method for Fault Classification of Power Intelligent IoT Terminals Based on Knowledge Data Fusion

  • 摘要: 电力物联智能终端离线故障的准确辨识能够极大地提升运维效率。但随着新型电力系统的建设,电力物联智能终端逐渐多样化,所采集的历史数据也逐渐丰富,需要强大的特征提取与分析能力才能尽可能准确地从历史数据中分析出终端的离线原因。基于上述问题,文章提出了知识数据融合的电力物联智能终端故障分类广义集成学习方法,首先构建了GRU-DNN-Attention网络模型,利用GRU和Attention层提取历史时序数据中的异常特征,并融入知识以提升算法的分类准确性,进而提出了基于动态权重自适应的广义集成学习算法,以解决神经网络在小数据集中表现不佳的问题。通过仿真实验,验证了该算法能够较好地实现电力物联智能终端离线故障原因的分类辨识。

     

    Abstract: Accurate identification of offline faults in power intelligent IoT terminals can greatly improve operation and maintenance efficiency. But with the construction of a new type of power system, intelligent IoT terminals are gradually diversified, and the collected historical data is also gradually enriched. Strong feature extraction and analysis capabilities are needed to accurately analyze the offline reasons of terminals from historical data as much as possible. Based on the above issues, this paper proposes a generalized ensemble learning method for power intelligent IoT terminal fault classification using knowledge data fusion. Firstly, a GRU-DNN-Attention network model is constructed, which utilizes the GRU and attention layers to extract abnormal features from historical time series data, and integrates knowledge to improve the classification accuracy of the algorithm. Furthermore, a generalized ensemble learning algorithm based on dynamic weight adaptation is proposed to solve the problem of poor performance of neural networks in small datasets. Simulation experiment results show that the algorithm proposed in this paper can effectively classify and identify the causes of offline faults in power intelligent IoT terminals.

     

/

返回文章
返回