罗梦, 魏盛桃, 杨知. 一种输电通道关键要素识别的知识图谱构建方法[J]. 电力信息与通信技术, 2023, 21(4): 37-43. DOI: 10.16543/j.2095-641x.electric.power.ict.2023.04.06
引用本文: 罗梦, 魏盛桃, 杨知. 一种输电通道关键要素识别的知识图谱构建方法[J]. 电力信息与通信技术, 2023, 21(4): 37-43. DOI: 10.16543/j.2095-641x.electric.power.ict.2023.04.06
LUO Meng, WEI Shengtao, YANG Zhi. A Knowledge Graph Construction Method for Identifying Key Elements of Transmission Channels[J]. Electric Power Information and Communication Technology, 2023, 21(4): 37-43. DOI: 10.16543/j.2095-641x.electric.power.ict.2023.04.06
Citation: LUO Meng, WEI Shengtao, YANG Zhi. A Knowledge Graph Construction Method for Identifying Key Elements of Transmission Channels[J]. Electric Power Information and Communication Technology, 2023, 21(4): 37-43. DOI: 10.16543/j.2095-641x.electric.power.ict.2023.04.06

一种输电通道关键要素识别的知识图谱构建方法

A Knowledge Graph Construction Method for Identifying Key Elements of Transmission Channels

  • 摘要: 输电通道关键要素的识别与提取是输电线路巡检管理中重要的一环,深度学习算法使得要素识别走向自动化、智能化,然而算法需要大量知识图谱进行训练。基于此,文章以卫星遥感影像为数据源,提出一种大规模、多尺度的输电通道关键要素知识图谱的自动化构建方法,在减少人工标注的工作量的同时完善知识图谱质量,并充分利用有限的数据资源。研究表明,基于文中所构建知识图谱进行训练后,识别的关键要素精度相较于基于传统面向对象方法展现出更高的准确度。

     

    Abstract: Identification and extraction of key elements of transmission channels is an important part of the inspection and management of transmission lines. The deep learning algorithm makes the identification of elements automated and intelligent, but the algorithm requires a lot of knowledge graphs for training. Therefore, we propose a large-scale, multi-scale automated construction method for the knowledge graph of key elements of power transmission channels. This method can improve the sample quality while reducing the workload of manual annotation. The research shows that the accuracy of key elements recognized after training with deep learning algorithm based on the knowledge graph constructed have higher accuracy than that based on traditional object-oriented methods.

     

/

返回文章
返回