刘津, 乔宝榆, 朱腾翌, 宋钰龙, 张光, 郝敬乾, 林莉芳, 董豪晨. 基于BERT-GAT的科技论文审稿专家推荐算法研究[J]. 电力信息与通信技术, 2022, 20(7): 75-82. DOI: 10.16543/j.2095-641x.electric.power.ict.2022.07.010
引用本文: 刘津, 乔宝榆, 朱腾翌, 宋钰龙, 张光, 郝敬乾, 林莉芳, 董豪晨. 基于BERT-GAT的科技论文审稿专家推荐算法研究[J]. 电力信息与通信技术, 2022, 20(7): 75-82. DOI: 10.16543/j.2095-641x.electric.power.ict.2022.07.010
LIU Jin, QIAO Baoyu, ZHU Tengyi, SONG Yulong, ZHANG Guang, HAO Jingqian, LIN Lifang, DONG Haochen. Research on Paper Reviewer Recommendation Algorithm Based on BERT-GAT[J]. Electric Power Information and Communication Technology, 2022, 20(7): 75-82. DOI: 10.16543/j.2095-641x.electric.power.ict.2022.07.010
Citation: LIU Jin, QIAO Baoyu, ZHU Tengyi, SONG Yulong, ZHANG Guang, HAO Jingqian, LIN Lifang, DONG Haochen. Research on Paper Reviewer Recommendation Algorithm Based on BERT-GAT[J]. Electric Power Information and Communication Technology, 2022, 20(7): 75-82. DOI: 10.16543/j.2095-641x.electric.power.ict.2022.07.010

基于BERT-GAT的科技论文审稿专家推荐算法研究

Research on Paper Reviewer Recommendation Algorithm Based on BERT-GAT

  • 摘要: 随着科技论文投稿数量的快速增长,对评审推荐算法的改进势在必行。确保送审论文的高质量、送审论文与专家的精准匹配是改进评审推荐算法亟需解决的问题。文章提出融合语义信息的图注意力网络(BERT-graph attention networks,BERT-GAT)算法解决论文推荐审稿专家问题,首先基于专家已发表论文,提取关键词形成专家的研究方向并构建二分图,然后使用BERT提取论文摘要或标题的语义信息,并基于二分图构建GAT模型,最后将论文的语义信息和GAT融合得到BERT-GAT模型。在《电网技术》期刊论文评审数据集和论文引文推荐数据集上进行实验,对比其他推荐算法,BERT-GAT算法在各评价指标上取得了较好的结果,表明了该算法的有效性。

     

    Abstract: With the explosive growth of the submitted paper number, it is imperative to improve the satisfaction of recommendation system for paper review. To achieve the best match of reviewer and the paper is the key to obtain high quality papers. This paper proposes a BERT-GAT algorithm to solve the matching problem of reviewers and papers. First, based on the published papers of reviewers, keywords are extracted to form the research direction of experts and construct a bipartite graph. Then, the semantic information of the abstract or title of the paper is extracted by Bert, and the graph attention network (GAT) model is constructed based on the bipartite graph. Finally, the semantic information of the paper is fused with the graph attention network (GAT) to obtain the BERT-GAT model. Compared with other recommended algorithms, the BERT-GAT algorithm has achieved good results in each evaluation index on dataset of Power System Technology, which shows the effectiveness of the algorithm.

     

/

返回文章
返回