耿继朴, 蒋锦霞, 郑晓燕, 赖晓瀚, 王剑, 徐亦白. 基于大数据驱动的配电网故障风险预警方法[J]. 电力信息与通信技术, 2022, 20(7): 41-49. DOI: 10.16543/j.2095-641x.electric.power.ict.2022.07.006
引用本文: 耿继朴, 蒋锦霞, 郑晓燕, 赖晓瀚, 王剑, 徐亦白. 基于大数据驱动的配电网故障风险预警方法[J]. 电力信息与通信技术, 2022, 20(7): 41-49. DOI: 10.16543/j.2095-641x.electric.power.ict.2022.07.006
GENG Jipu, JIANG Jinxia, ZHENG Xiaoyan, LAI Xiaohan, WANG Jian, XU Yibai. Distribution Network Fault Risk Early Warning Method Based on Big Data[J]. Electric Power Information and Communication Technology, 2022, 20(7): 41-49. DOI: 10.16543/j.2095-641x.electric.power.ict.2022.07.006
Citation: GENG Jipu, JIANG Jinxia, ZHENG Xiaoyan, LAI Xiaohan, WANG Jian, XU Yibai. Distribution Network Fault Risk Early Warning Method Based on Big Data[J]. Electric Power Information and Communication Technology, 2022, 20(7): 41-49. DOI: 10.16543/j.2095-641x.electric.power.ict.2022.07.006

基于大数据驱动的配电网故障风险预警方法

Distribution Network Fault Risk Early Warning Method Based on Big Data

  • 摘要: 文章提出一种基于改进的RelieF-Softmax算法的配电网故障风险预警方法。首先通过数据调研和预处理,确定配电网4类24个故障特征量,综合考虑配电网故障发生频次与故障影响后果,提出配电网风险等级划分方法;其次引入K-maxmin聚类算法,对随机抽样过程进行优化,提出改进的RelieF特征提取方法,筛选出最强相关最小冗余的最优特征向量;最后构造改进的模型损失函数,以解决样本不平衡问题,采用最优特征向量和Softmax分类器对配电网故障风险进行预警。对南方某地191条馈线进行故障风险等级预测分析,结果验证了文章所提配电网故障风险预警模型和方法的有效性。

     

    Abstract: A fault risk early warning method of distribution network based on improved RelieF-Softmax algorithm is proposed. Four categories including 24 fault features of distribution network are determined through data investigation and preprocessing. Considering the frequency of distribution network faults and their consequences, the risk classification method of distribution network is presented. K-maxmin clustering algorithm is introduced to improve the random sampling process, and an improved RelieF feature extraction method is proposed to obtain the optimal feature subset with the strongest correlation and minimum redundancy. The loss function of Softmax is improved to cope with the influence of sample imbalance on the prediction accuracy. The optimal feature subset and Softmax classifier are applied to forewarn the fault risk of distribution network. The fault risks of 191 feeders in the south of China are warned, and the test results demonstrate the effectiveness of the proposed method.

     

/

返回文章
返回