郝雪, 高琦, 耿立卓, 刘璐. 基于知识图谱的光传送网知识点自适应测评建模研究[J]. 电力信息与通信技术, 2021, 19(9): 127-134. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.018
引用本文: 郝雪, 高琦, 耿立卓, 刘璐. 基于知识图谱的光传送网知识点自适应测评建模研究[J]. 电力信息与通信技术, 2021, 19(9): 127-134. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.018
HAO Xue, GAO Qi, GENG Lizhuo, LIU Lu. Study on the Adaptive Evaluation Modeling of Optical Transport Network Knowledge Points Based on Knowledge Graph[J]. Electric Power Information and Communication Technology, 2021, 19(9): 127-134. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.018
Citation: HAO Xue, GAO Qi, GENG Lizhuo, LIU Lu. Study on the Adaptive Evaluation Modeling of Optical Transport Network Knowledge Points Based on Knowledge Graph[J]. Electric Power Information and Communication Technology, 2021, 19(9): 127-134. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.018

基于知识图谱的光传送网知识点自适应测评建模研究

Study on the Adaptive Evaluation Modeling of Optical Transport Network Knowledge Points Based on Knowledge Graph

  • 摘要: 文章构建了一种基于知识图谱的光传送网(Optical Transport Network,OTN)知识点自适应测评模型,用于对海量OTN知识掌握水平的智能测评。所提模型结合项目反应理论和贝叶斯网络,实现OTN知识测试过程中的自适应选题,并借助图谱中知识点间的逻辑关系实现对OTN知识水平的快速计算。实践结果证明,所提模型能够实时计算被试者的能力水平,并以此为依据自动调整下一道题目的难度,最终精准预测被试者的知识薄弱点,能力水平的预测误差在4%以内。文章采用实际案例证明了所提模型的应用效果良好。

     

    Abstract: In this paper, an adaptive evaluation model of the optical transport network (OTN) knowledge points based on the knowledge graph is constructed, which is used for the intelligent evaluation of the massive OTN knowledge mastery. The model combines the item response theory and the Bayesian theory to achieve an adaptive selection of questions in the process of OTN knowledge tests. Meanwhile, the model achieves a rapid calculation of the OTN knowledge level with the aid of the knowledge point relationship in the knowledge graph. It is demonstrated that the model can calculate the ability of those tested in real time and automatically adjust the difficulty of the next question based on the ability calculation results. Finally, the knowledge weakness of those tested is accurately predicted, with the prediction error less than 4%. Practical cases are used in this work to show the good application effect of the proposed model.

     

/

返回文章
返回