胡正伟, 赵然, 陈维寅, 谢志远. 基于改进去噪自编码器的电力线信道传输特性识别实现[J]. 电力信息与通信技术, 2021, 19(9): 86-92. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.012
引用本文: 胡正伟, 赵然, 陈维寅, 谢志远. 基于改进去噪自编码器的电力线信道传输特性识别实现[J]. 电力信息与通信技术, 2021, 19(9): 86-92. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.012
HU Zhengwei, ZHAO Ran, CHEN Weiyin, XIE Zhiyuan. Realization of Power Line Channel Transmission Characteristics Identification Based on Improved Denoising Auto-Encoder[J]. Electric Power Information and Communication Technology, 2021, 19(9): 86-92. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.012
Citation: HU Zhengwei, ZHAO Ran, CHEN Weiyin, XIE Zhiyuan. Realization of Power Line Channel Transmission Characteristics Identification Based on Improved Denoising Auto-Encoder[J]. Electric Power Information and Communication Technology, 2021, 19(9): 86-92. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.012

基于改进去噪自编码器的电力线信道传输特性识别实现

Realization of Power Line Channel Transmission Characteristics Identification Based on Improved Denoising Auto-Encoder

  • 摘要: 文章提出了一种改进的去噪自编码器,提高了带噪电力线信道传输特性样本的识别成功率。所提方案以一维时间序列代替二维图片作为输入,改进了传统自编码器的处理数据网络结构,引入z-score标准化及对应的反标准化对输入输出信号进行处理,在提高去噪能力的同时加快了收敛速度。选取包含2个隐含层的4层神经网络从软件模型及硬件实现2个方面验证了所提方法的有效性。

     

    Abstract: An improved de-noising auto-encoder is proposed to improve the recognition success rate of transmission characteristic in noisy power line channel. The proposed scheme uses one-dimensional time series instead of two-dimensional images as input, which improves the processing data network structure of traditional self-encoder. The introduction of Z-score standardization and corresponding anti-standardization to the input and output signal processing can improve the de-noising ability and speed up the convergence speed. One 4 layers neural network with two hidden layers is selected to verify the effectiveness of the proposed method from two aspects of software model and hardware implementation.

     

/

返回文章
返回