吴雪琼, 孙保华, 马洲俊. 配电网设备感知热像的自适应多阈值分割研究[J]. 电力信息与通信技术, 2021, 19(9): 70-76. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.010
引用本文: 吴雪琼, 孙保华, 马洲俊. 配电网设备感知热像的自适应多阈值分割研究[J]. 电力信息与通信技术, 2021, 19(9): 70-76. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.010
WU Xueqiong, SUN Baohua, MA Zhoujun. Research on Adaptive Multi-Threshold Segmentation of Thermal Image of Power Distribution Equipment[J]. Electric Power Information and Communication Technology, 2021, 19(9): 70-76. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.010
Citation: WU Xueqiong, SUN Baohua, MA Zhoujun. Research on Adaptive Multi-Threshold Segmentation of Thermal Image of Power Distribution Equipment[J]. Electric Power Information and Communication Technology, 2021, 19(9): 70-76. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.010

配电网设备感知热像的自适应多阈值分割研究

Research on Adaptive Multi-Threshold Segmentation of Thermal Image of Power Distribution Equipment

  • 摘要: 利用机器视觉技术从红外热像中提取感兴趣区域(Region Of Interest,ROI),是配网设备红外故障智能诊断的关键,但多目标区域阈值选取失配会导致图像关键细节信息丢失。为此,文章提出蝙蝠仿生算法的红外热像多阈值分割技术,利用寻优阈值对配网被检设备红外热像的多目标进行图像分割实验,重点突破了算法准确率指标提升问题。对比实验表明,相比于经典图像分割方法,本方法有效提升了算法运行速度与图像分割精度,解决了复杂环境热像ROI区域提取难题。

     

    Abstract: Using machine vision technology to extract regions of interest (ROI) from infrared thermal images is a key link for intelligent diagnosis of infrared faults in power distribution equipment. But the mismatch of threshold selection of multi-target region leads to the loss of key details of image. Therefore, this paper puts forward an infrared thermal image multi-threshold segmentation technology of bat bionic algorithm, and uses the optimization threshold to carry on the image segmentation experiment to the infrared thermal image multi-target of power distribution equipment, which breaks through the problem of improving the accuracy index of the algorithm. Compared with the classical image segmentation method, this method can effectively improve the speed and accuracy of image segmentation, and solve the problem of hot image ROI region extraction in complex environment.

     

/

返回文章
返回