向辉, 严波, 稂龙亚, 王文清, 姜佳耀. 面向能源互联网的时空智能应用关键技术研究[J]. 电力信息与通信技术, 2021, 19(9): 24-30. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.004
引用本文: 向辉, 严波, 稂龙亚, 王文清, 姜佳耀. 面向能源互联网的时空智能应用关键技术研究[J]. 电力信息与通信技术, 2021, 19(9): 24-30. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.004
XIANG Hui, YAN Bo, LANG Longya, WANG Wenqing, JIANG Jiayao. Research on Key Technologies of Spatial-Temporal Intelligent Application for Energy Internet[J]. Electric Power Information and Communication Technology, 2021, 19(9): 24-30. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.004
Citation: XIANG Hui, YAN Bo, LANG Longya, WANG Wenqing, JIANG Jiayao. Research on Key Technologies of Spatial-Temporal Intelligent Application for Energy Internet[J]. Electric Power Information and Communication Technology, 2021, 19(9): 24-30. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.09.004

面向能源互联网的时空智能应用关键技术研究

Research on Key Technologies of Spatial-Temporal Intelligent Application for Energy Internet

  • 摘要: 能源产业价值链的生产–配送–储存–消费各价值环节中,从能源配置角度应按负荷需求转换为与负荷最接近的品位(电–油–气–储等),实现在能源互联网构成的空间中高效流动,并从时间、空间上优化能量的生产、传输和使用。现有能源数据具有较强的时空分布特性,且数量庞大、类别繁多,无法实现对各价值环节相关要素进行实时感知、规律挖掘、历史溯源、预测预警等。文章充分发挥大数据、地图基础数据、位置服务生态、可视化引擎等互联网技术优势,分析了能源互联网多时空尺度问题,提出了一种面向能源互联网下的时空智能应用框架,探索了能源互联网下时空智能应用方向,融合汇聚了多源多类型、多时间尺度的能源数据,助力建设高效安全、互联互通的能源互联网络。

     

    Abstract: From the perspective of energy configuration, each link in the value chain (production-distribution-storage-consumption) of the energy industry should be transformed into the grade closest possible to the load (electricity-oil-gas-storage) according to the load demand. The aim is to achieve efficient flow in the energy network and to improve the production, transmission, and utilization of energy in time and space. The present energy data are of strong spatial-temporal distribution characteristic with a huge quantity and wide categories, and thus functions such as real-time sensing, rule tapping, source tracing, and forecasting of the value chain link-related elements are impossible to be realized. This paper fully leverages the strengths of network technologies (big data, basic map data, location-based ecology, and visual engine), analyzes multiple spatial-temporal scales of the energy network, and puts forward a spatial-temporal intelligent application framework in the energy network. This paper also explores the directions of spatial-temporal intelligent application in the energy network by combining multi-source, multi-type, and multi-time scale energy data, helps to construct an efficient, safe, and interconnected energy network.

     

/

返回文章
返回