陈楠, 曹雪虹, 焦良葆, 朱红, 石伟伟, 袁枫. 变电站NLOS环境下的UKF超宽带定位改进算法[J]. 电力信息与通信技术, 2021, 19(5): 71-81. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.05.011
引用本文: 陈楠, 曹雪虹, 焦良葆, 朱红, 石伟伟, 袁枫. 变电站NLOS环境下的UKF超宽带定位改进算法[J]. 电力信息与通信技术, 2021, 19(5): 71-81. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.05.011
CHEN Nan, CAO Xuehong, JIAO Liangbao, ZHU Hong, SHI Weiwei, YUAN feng. Improved UKF UWB Positioning Algorithm in NLOS Substation Environment[J]. Electric Power Information and Communication Technology, 2021, 19(5): 71-81. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.05.011
Citation: CHEN Nan, CAO Xuehong, JIAO Liangbao, ZHU Hong, SHI Weiwei, YUAN feng. Improved UKF UWB Positioning Algorithm in NLOS Substation Environment[J]. Electric Power Information and Communication Technology, 2021, 19(5): 71-81. DOI: 10.16543/j.2095-641x.electric.power.ict.2021.05.011

变电站NLOS环境下的UKF超宽带定位改进算法

Improved UKF UWB Positioning Algorithm in NLOS Substation Environment

  • 摘要: 为解决非视距(Non-Line-of-Sight,NLOS)严重的变电站环境下定位精度低的问题,在飞行时间(Time of Flight,TOA)测距方法的基础上,文章提出了融合Taylor级数和无迹卡尔曼滤波的定位算法以提升定位估计精度。该算法首先对泰勒算法的初值提出改进,通过对加权最小二乘法(Weighted Least Squares Method,WLS)解算的位置估计值进行阈值筛选和权重计算,保证定位精度的同时降低了迭代次数;然后针对在NLOS环境下标签坐标预测不稳定的问题,引入无迹卡尔曼滤波(Unscented Kalman Filter,UKF)算法进行去噪,将Taylor级数的估计值作为UKF算法的观测值,以提高UKF预测时的估计精度。测试结果表明,在静态实验下,该方法的均方根误差至少降低了5.81%;在动态实验下,路径跟踪的平均定位误差能够降低37.5%以上。

     

    Abstract: In order to solve the problem of low positioning accuracy in the severe non-line-of-sight (NLOS) substation environment, based on the time-of-flight (TOA) ranging method, a positioning algorithm combining Taylor series and unscented Kalman filter is proposed to improve positioning estimation accuracy. The algorithm first improves the initial value of the Taylor algorithm, the threshold filtering and weight calculation of the position estimated value are solved by the weighted least squares method (WLS) to reduce the number of iterations while ensuring the positioning accuracy. Then, for the problem of unstable prediction of the lower label coordinates in the NLOS environment, the Unscented Kalman Filter (UKF) algorithm is introduced for de-noising, and the estimated value of Taylor series is used as the observed value of the UKF algorithm to improve the estimation accuracy of UKF prediction. The test results show that the root mean square error of this method is reduced by at least 5.81% under the static experiment. Under the dynamic experiment, the average positioning error of path tracking can be reduced by more than 37.5%.

     

/

返回文章
返回