祝泳琪, 刘友波, 唐志远, 许梓荣, 高红均, 刘俊勇. 基于数据驱动预测控制的有源配电网电压控制策略[J]. 电力系统自动化, 2024, 48(20): 100-108.
引用本文: 祝泳琪, 刘友波, 唐志远, 许梓荣, 高红均, 刘俊勇. 基于数据驱动预测控制的有源配电网电压控制策略[J]. 电力系统自动化, 2024, 48(20): 100-108.
ZHU Yong-qi, LIU You-bo, TANG Zhi-yuan, XU Zi-rong, GAO Hong-jun, LIU Jun-yong. Voltage Control Strategy for Active Distribution Network Based on Data-enabled Predictive Control[J]. Automation of Electric Power Systems, 2024, 48(20): 100-108.
Citation: ZHU Yong-qi, LIU You-bo, TANG Zhi-yuan, XU Zi-rong, GAO Hong-jun, LIU Jun-yong. Voltage Control Strategy for Active Distribution Network Based on Data-enabled Predictive Control[J]. Automation of Electric Power Systems, 2024, 48(20): 100-108.

基于数据驱动预测控制的有源配电网电压控制策略

Voltage Control Strategy for Active Distribution Network Based on Data-enabled Predictive Control

  • 摘要: 高比例分布式光伏接入配电网使得系统的不确定性更加严峻,而配电网的网络拓扑与线路参数等数据很难准确获取,使得基于精确物理建模的传统配电网控制方法难以发挥作用。随着配电网量测装置的普及应用,配电网运行数据的获取愈发容易。文中提出一种基于配电网量测数据的有源配电网无模型电压控制方法。首先,基于配电网历史数据构建Hankel矩阵,建立网络节点电压与储能输出功率的关系;其次,利用局部量测数据,在考虑不确定干扰因素以及储能寿命衰减模型的同时,构建数据驱动预测控制下的配电网电压优化框架,实现控制周期内配电网电压的滚动优化;最后,通过IEEE 34节点标准算例与改进的IEEE 123节点算例仿真验证了所提方法的有效性和优越性。

     

    Abstract: The integration of a high proportion of distributed photovoltaic into distribution networks exacerbates the system uncertainty. Moreover, it is difficult to accurately acquire data such as the network topology and line parameters of distribution networks, rendering traditional control methods for distribution networks based on precise physical modeling ineffective. With the widespread application of measurement devices in distribution networks, it becomes increasingly easier to obtain operation data of distribution networks. This paper proposes a model-free voltage control method for active distribution networks based on measurement data of distribution networks. Firstly, a Hankel matrix is constructed based on the historical data of the distribution network to establish the relationship between the node voltages of the network and the output power of energy storage. Secondly,using local measurement data and considering uncertain disturbance factors and the attenuation model of the energy storage lifespan, an optimization framework for distribution network voltage under data-enabled predictive control is constructed to achieve the rolling optimization of distribution network voltage within the control cycle. Finally, the effectiveness and superiority of the proposed method are verified through simulations using the IEEE 34-bus standard case and the modified IEEE 123-bus case.

     

/

返回文章
返回