杨国华, 郑豪丰, 张鸿皓, 贾睿. 基于Holt-Winters指数平滑和时间卷积网络的短期负荷预测[J]. 电力系统自动化, 2022, 46(6): 73-82.
引用本文: 杨国华, 郑豪丰, 张鸿皓, 贾睿. 基于Holt-Winters指数平滑和时间卷积网络的短期负荷预测[J]. 电力系统自动化, 2022, 46(6): 73-82.
YANG Guohua, ZHENG Haofeng, ZHANG Honghao, JIA Rui. Short-term Load Forecasting Based on Holt-Winters Exponential Smoothing and Temporal Convolutional Network[J]. Automation of Electric Power Systems, 2022, 46(6): 73-82.
Citation: YANG Guohua, ZHENG Haofeng, ZHANG Honghao, JIA Rui. Short-term Load Forecasting Based on Holt-Winters Exponential Smoothing and Temporal Convolutional Network[J]. Automation of Electric Power Systems, 2022, 46(6): 73-82.

基于Holt-Winters指数平滑和时间卷积网络的短期负荷预测

Short-term Load Forecasting Based on Holt-Winters Exponential Smoothing and Temporal Convolutional Network

  • 摘要: 为提升短期电力负荷预测的精度,着眼于特征组合的构建,提出了一种基于Holt-Winters指数平滑的特征组合(FCHW),并结合时间卷积网络(TCN)构建了FCHW-TCN负荷预测框架。首先,应用Holt-Winters指数平滑进行负荷序列预测,得到与负荷序列相关的级别分量和季节性分量。通过将上述分量用作输入特征,并与常规特征(历史负荷、日期)构成特征组合,构建了FCHW;其次,选择TCN作为预测模型,以FCHW作为TCN输入,搭建了FCHW-TCN预测框架;最后,采用2个不同负荷数据集和多个预测模型对FCHW和FCHW-TCN进行验证。结果表明,FCHW有助于模型预测精度的提升;与其他预测模型相比,FCHW-TCN预测框架有着最高的预测精度,具有优越的预测能力。

     

    Abstract: In order to improve the accuracy of short-term load forecasting, focusing on the construction of feature combinations, a feature combination based on Holt-Winters exponential smoothing(FCHW) is proposed. And combined with the temporal convolutional network(TCN), the FCHW-TCN load forecasting framework is established. Firstly, the Holt-Winters exponential smoothing is applied to the load sequence forecasting, and the level component and seasonal component related to the load sequence are obtained. By using the above components as input features and combining them with conventional features(historical load, date), the FCHW is constructed. Secondly, the TCN is chosen as the forecasting model, and the FCHW acts as the input of the TCN to build the FCHW-TCN forecasting framework. Finally, two different load data sets and multiple forecasting models are used to verify the FCHW and the FCHW-TCN. The results show that the FCHW contributes to the improvement of the forecasting accuracy for models. Compared with other forecasting models, FCHW-TCN forecasting framework has the highest forecasting accuracy and superior forecasting ability.

     

/

返回文章
返回