梁宁, 方茜, 徐慧慧, 郑峰, 缪猛. 基于节点碳势需求响应的电力系统双层优化调度[J]. 电力系统自动化, 2024, 48(9): 44-53.
引用本文: 梁宁, 方茜, 徐慧慧, 郑峰, 缪猛. 基于节点碳势需求响应的电力系统双层优化调度[J]. 电力系统自动化, 2024, 48(9): 44-53.
LIANG Ning, FANG Qian, XU Huihui, ZHENG Feng, MIAO Meng. Bi-level Optimal Dispatching of Power System Based on Demand Response Considering Nodal Carbon Intensity[J]. Automation of Electric Power Systems, 2024, 48(9): 44-53.
Citation: LIANG Ning, FANG Qian, XU Huihui, ZHENG Feng, MIAO Meng. Bi-level Optimal Dispatching of Power System Based on Demand Response Considering Nodal Carbon Intensity[J]. Automation of Electric Power Systems, 2024, 48(9): 44-53.

基于节点碳势需求响应的电力系统双层优化调度

Bi-level Optimal Dispatching of Power System Based on Demand Response Considering Nodal Carbon Intensity

  • 摘要: 为实现电力系统低碳排放、助力经济提升,在建立碳势引导多元柔性负荷模型的基础上,提出一种基于节点碳势需求响应的双层优化调度策略。首先,利用比例共享原则追踪碳排放流,搭建碳排放流模型,从时空维度感知各节点的碳势变化规律。其次,将碳流分析纳入负荷侧需求响应机制中,利用节点碳势建立负荷聚合商需求响应碳排放模型,并厘清不同碳势强度下负荷聚合商调度差异,构建基于节点碳势需求响应的电力系统双层优化调度模型。模型上层为电网运营商最优经济调度,模型下层为负荷聚合商需求响应经济调度。最后,以改进IEEE 30节点系统为例,验证了所提方法的有效性。

     

    Abstract: In order to realize the low-carbon emission of power system and boost the economic growth, a bi-level optimal dispatching strategy based on the demand response considering nodal carbon intensity is proposed, which uses the model of carbon intensity guided multivariate flexible load as basic. First, by using the principle of proportional sharing to track the carbon emission flow, a carbon emission flow model is built, and the carbon intensity variation law of each node is perceived from a spatiotemporal dimension. Then, the carbon flow analysis is incorporated into the load-side demand response mechanism, the nodal carbon intensity is used to establish the carbon emission model of demand response for load aggregators, and the dispatching differences of load aggregators under different carbon intensities are clarified to build a bi-level optimal dispatching model of power system based on demand response considering nodal carbon intensity. The upper-level of the model is the optimal economic dispatching of power grid operators, and the lower-level of the model is the demand response economic dispatching of load aggregators. Finally, the effectiveness of the proposed method is verified by a modified IEEE 30-bus system.

     

/

返回文章
返回