Electromagnetic Transient Controlled Source Based Decoupling Acceleration Model for Large-scale Offshore Wind Farm
-
摘要: 随着风电装机容量及占比越来越大,大规模风电场电磁暂态仿真速度极慢的问题愈加凸显。针对现有建模方法复杂、无法反映风电场内部特性、灵活性不足等问题,提出一种大规模海上风电场电磁暂态受控源解耦加速模型。该方法通过受控源传递端口间电压和电流信息,实现风电机组内部元件之间以及不同风电机组之间端口的解耦,从而将系统解算过程中高阶矩阵分解为多个小矩阵以实现快速仿真。基于节点分析法和基尔霍夫定律证明了该方法的有效性。所提出的受控源解耦加速模型建模方法简单,通过仿真软件中现有模块拖拽即可搭建,可以准确仿真风电场的各种暂稳态工况,并且提速效果明显。同时,所提受控源解耦加速模型可与现有文献所提方法互补,扩展其灵活性。最后,在PSCAD/EMTDC中搭建了不同机组数量的风电场模型,验证了受控源解耦加速模型的仿真精度及加速效果。结果表明,所提受控源解耦加速模型可实现1~2个数量级的加速效果,且相比详细模型具有较高的仿真精度。Abstract: With the increase of installed capacity and proportion of wind power,the problem of extremely slow electromagnetic transient simulation speed of large-scale wind farms is becoming more and more prominent.In view of the complexity of the existing modeling methods,the inability to reflect internal characteristics of the wind farm,and the lack of flexibility,this paper proposes an electromagnetic transient controlled source based decoupling acceleration model(CS-DAM) for the large-scale offshore wind farm.This method realizes the decoupling between the internal components of the wind turbine(WT) and the ports between different WTs by transmitting the voltage and current information between the ports through the controlled source,so that the highorder matrix in the system solution process is decomposed into multiple small matrices to achieve simulation acceleration.The effectiveness of the method is proved based on the node analysis method and Kirchhoff’s law.The proposed modeling method of CS-DAM,which can build a model by dragging existing modules in the simulation software,is simple.The CS-DAM can accurately simulate various transient and steady-state conditions of the wind farm,and the acceleration effect is obvious.Meanwhile,the proposed CS-DAM can complement the methods proposed in the existing literature and expand their flexibility.Finally,wind farm models with different numbers of WTs are built in PSCAD/EMTDC to verify the simulation accuracy and acceleration effect of the CS-DAM.The results show that the proposed CS-DAM can achieve acceleration effects of 1~2 orders of magnitude,and has higher simulation accuracy compared to the detailed model.
-
[1] Global Wind Energy Council. Global wind report 2022[R].Brussels, Belgium:Global Wind Energy Council, 2022.
[2] 郭琦,卢远宏.新型电力系统的建模仿真关键技术及展望[J].电力系统自动化,2022,46(10):18-32. GUO Qi, LU Yuanhong. Key technologies and prospects of modeling and simulation of new power system[J]. Automation of Electric Power Systems, 2022, 46(10):18-32.
[3] 吴磊,晁璞璞,李甘,等.数据-模型混合驱动的风电场聚合等值建模方法[J].电力系统自动化,2022,46(15):66-74. WU Lei, CHAO Pupu, LI Gan, et al. Hybrid data-model-driven aggregation equivalent modeling method for wind farm[J].Automation of Electric Power Systems, 2022, 46(15):66-74.
[4] 薛翼程,张哲任,徐政.适用于短路故障分析的风电场动态等值建模方法[J].太阳能学报,2022,43(5):327-335. XUE Yicheng, ZHANG Zheren, XU Zheng. Dynamic equivalent model of wind farm for short-circuit faults analysis[J].Acta Energiae Solaris Sinica, 2022, 43(5):327-335.
[5] LIU H K, XIE X R, HE J B, et al. Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE Transactions on Power Systems, 2017, 32(6):4708-4720.
[6] 穆世霞,侯俊贤,王虹富,等.双馈风力发电机组快速电磁暂态仿真模型[J].电力系统自动化,2019,43(9):147-153. MU Shixia, HOU Junxian, WANG Hongfu, et al. Fast electromagnetic transient simulation model of doubly-fed induction generator based wind turbine[J]. Automation of Electric Power Systems, 2019, 43(9):147-153.
[7] 夏玥,李征,蔡旭,等.基于直驱式永磁同步发电机组的风电场动态建模[J].电网技术,2014,38(6):1439-1445. XIA Yue, LI Zheng, CAI Xu, et al. Dynamic modeling of wind farm composed of direct-driven permanent magnet synchronous generators[J]. Power System Technology, 2014, 38(6):1439-1445.
[8] 吴志鹏,裴建华,李银红.基于低电压穿越功率特性的双馈风电场多机等值方法[J].电力系统自动化,2022,46(19):95-103. WU Zhipeng, PEI Jianhua, LI Yinhong. Multi-machine equivalent method for DFIG-based wind farm based on power characteristic of low voltage ride-through[J]. Automation of Electric Power Systems, 2022, 46(19):95-103.
[9] 潘学萍,戚相威,梁伟,等.综合模型聚合和参数辨识的风电场多机等值及参数整体辨识[J].电力自动化设备,2022,42(1):124-132. PAN Xueping, QI Xiangwei, LIANG Wei, et al. Multi-machine equivalence and global identification of wind farms by combining model aggregation and parameter estimation[J]. Electric Power Automation Equipment, 2022, 42(1):124-132.
[10] ZOU M, WANG Y, ZHAO C, et al. Integrated equivalent model of permanent magnet synchronous generator based wind turbine for large-scale offshore wind farm simulation[J/OL].Journal of Modern Power Systems and Clean Energy[2023-04-30]. https://10.35833/MPCE.2022.000495.
[11] ZOU M, ZHAO C Y, XU J Z. Modeling for large-scale offshore wind farm using multi-thread parallel computing[J].International Journal of Electrical Power&Energy Systems,2023, 148:108928.
[12] 姚蜀军,刘刚,曾子文,等.直驱风力发电单元的电磁暂态半隐式延迟解耦与仿真方法[J].中国电机工程学报,2022,42(16):6053-6063. YAO Shujun, LIU Gang, ZENG Ziwen, et al.Electromagnetic transient semi-implicit latency decoupling and simulation technology for direct-drive wind power generation unit[J]. Proceedings of the CSEE, 2022, 42(16):6053-6063.
[13] 曹斌,王立强,赵永飞,等.基于PSCAD/EMTDC的大规模新能源并网电磁暂态并行仿真[J].中国电力,2020,53(11):154-161. CAO Bin, WANG Liqiang, ZHAO Yongfei, et al.Electromagnetic transient parallel simulation of large-scale new energy grid connection based on PSCAD/EMTDC[J]. Electric Power, 2020, 53(11):154-161.
[14] LI Y P, SHU D W, SHI F, et al. A multi-rate co-simulation of combined phasor-domain and time-domain models for largescale wind farms[J]. IEEE Transactions on Energy Conversion, 2020, 35(1):324-335.
[15] 许建中,赵成勇,刘文静.超大规模MMC电磁暂态仿真提速模型[J].中国电机工程学报,2013,33(10):114-120. XU Jianzhong, ZHAO Chengyong, LIU Wenjing. Accelerated model of ultra-large scale MMC in electromagnetic transient simulations[J]. Proceedings of the CSEE, 2013, 33(10):114-120.
[16] 安峰,崔彬,白睿航,等.高压大容量直流变压器模块化离散解耦等效建模方法[J].电力系统自动化,2021,45(7):79-86. AN Feng, CUI Bin, BAI Ruihang, et al. Modular discrete decoupling equivalent modeling method for high-voltage largecapacity DC transformer[J]. Automation of Electric Power Systems, 2021, 45(7):79-86.
[17] 程启明,刘科,程尹曼,等.基于调制系数最优法的TLDMCPMSM新型直接转矩控制[J/OL].电力自动化设备:1-15[2023-04-30]. https://kns. cnki. net/kcms2/article/abstract? v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD64Gu MGdYvUCEmiB1GTA1qad4URBGFcuFikt8LHz4t9eLhrXsH Xf0YxV&uniplatform=NZKPT.CHENG Qiming, LIU Ke, CHENG Yinman, et al. New direct torque control of TLDMC-PMSM based on modulation coefficient optimization method[J/OL]. Electric Power Automation Equipment:1-15[2023-04-30]. https://kns. cnki.net/kcms2/article/abstract? v=3uoqIhG8C45S0n9fL2suRadT yEVl2pW9UrhTDCdPD64GuMGdYvUCEmiB1GTA1qad4U RBGFcuFikt8LHz4t9eLhrXsHXf0YxV&uniplatform=NZK PT. [18] MAHDI D, ARINDAM G. Controlling current and voltage type interfaces in power hardware-in-the-loop simulations[J].IET Power Electronics, 2014, 7(10):2618-2627.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0