龚锦霞, 刘艳敏. 基于深度确定策略梯度算法的主动配电网协调优化[J]. 电力系统自动化, 2020, 44(6): 113-120.
引用本文: 龚锦霞, 刘艳敏. 基于深度确定策略梯度算法的主动配电网协调优化[J]. 电力系统自动化, 2020, 44(6): 113-120.
GONG Jinxia, LIU Yanmin. Coordinated Optimization of Active Distribution Network Based on Deep Deterministic Policy Gradient Algorithm[J]. Automation of Electric Power Systems, 2020, 44(6): 113-120.
Citation: GONG Jinxia, LIU Yanmin. Coordinated Optimization of Active Distribution Network Based on Deep Deterministic Policy Gradient Algorithm[J]. Automation of Electric Power Systems, 2020, 44(6): 113-120.

基于深度确定策略梯度算法的主动配电网协调优化

Coordinated Optimization of Active Distribution Network Based on Deep Deterministic Policy Gradient Algorithm

  • 摘要: 将新一代人工智能在智能电网和能源互联网中进行应用,实现高比例可再生能源及时有效接入电网,文中基于深度学习中的深度确定策略梯度(DDPG)算法实现主动配电网的优化运行。首先,构造了含多微电网的主动配电网优化模型的DDPG回报函数,使主动配电网的节点电压总偏差和线损最小,最大限度地降低微电网功率调节量的变化以减小对微电网运行的影响,同时维持联络线功率平衡以减小对配电网的影响。然后,分析了主动配电网优化控制的DDPG样本数据处理、回报函数设计、模型训练和学习过程。最后,通过改进IEEE 14节点算例仿真验证了DDPG算法的有效性。

     

    Abstract: Applying the new generation of artificial intelligence in smart grid and Energy Internet, to achieve high proportion renewable energy access to the power grid in a timely and effective manner, the deep deterministic policy gradient(DDPG)algorithm based on deep learning is applied in the optimized operation of active distribution network(ADN). Firstly,DDPG return function of optimization model for ADN with multiple microgrids is constructed, which can minimize the total node voltage deviation and line loss of ADN. The proposed function can also minimize the variation of the power regulation of microgrid to reduce the impact on operation of the microgrid, and maintain the balance of tie-line power blance to reduce the impact on the distribution network. Secondly, DDPG sample data processing, design of return function, model training and learning process of optimization control for ADN are analyzed. Finally, the effectiveness of the algorithm is verified by the improved IEEE 14-bus example simulation.

     

/

返回文章
返回