杨震, 杨晶显, 王凯, 李玉梅, 刘俊勇, 张帅. 基于去噪扩散概率模型的水-光互补系统随机场景生成方法[J]. 电力系统自动化, 2024, 48(19): 171-180.
引用本文: 杨震, 杨晶显, 王凯, 李玉梅, 刘俊勇, 张帅. 基于去噪扩散概率模型的水-光互补系统随机场景生成方法[J]. 电力系统自动化, 2024, 48(19): 171-180.
YANG Zhen, YANG Jing-xian, WANG Kai, LI Yu-mei, LIU Jun-yong, ZHANG Shuai. Stochastic Scenario Generation Method Based on Denoising Diffusion Probabilistic Model for Hydro-Photovoltaic Complementary System[J]. Automation of Electric Power Systems, 2024, 48(19): 171-180.
Citation: YANG Zhen, YANG Jing-xian, WANG Kai, LI Yu-mei, LIU Jun-yong, ZHANG Shuai. Stochastic Scenario Generation Method Based on Denoising Diffusion Probabilistic Model for Hydro-Photovoltaic Complementary System[J]. Automation of Electric Power Systems, 2024, 48(19): 171-180.

基于去噪扩散概率模型的水-光互补系统随机场景生成方法

Stochastic Scenario Generation Method Based on Denoising Diffusion Probabilistic Model for Hydro-Photovoltaic Complementary System

  • 摘要: 随着水-光互补系统应用越来越广泛,准确地描述水-光出力的不确定性对电网的运行和规划具有重要影响。现有多源融合特性建模方法不仅存在考虑可再生能源出力时空相关性不充分的问题,而且在实际复杂应用环境下要进行先验假设,进而导致生成质量降低。基于此,文中提出了基于去噪扩散概率模型的水-光互补系统随机场景生成方法。首先,将结合欧氏距离和L2正则化的损失函数作为衡量生成噪声与原始噪声分布差异的标准,并设计适应水-光-荷随机场景生成的UNet网络结构;然后,通过对前向过程不断加噪和逆向过程不断去噪训练,捕捉水-光-荷多维变量相关性变化及波动特征,拟合其概率分布规律;最后,对多源数据协同建模,高效生成水-光互补系统随机场景。文中算例基于某地区电网实际采集数据进行测试,通过综合评估指标验证了所提方法的有效性。

     

    Abstract: With the wide application of hydro-photovoltaic(PV) complementary system, accurately describing the uncertainty of the hydro-PV output is of significance for the operation and planning of the power grid. The existing multi-source fusion characteristic modeling methods not only have the problem of insufficient consideration of the spatio-temporal correlation of renewable energy output, but also need to make prior assumptions in the practical complex application environment, which leads to the reduction of the generation quality. Based on this, a stochastic scenario generation method based on denoising diffusion probabilistic model(DDPM) for hydro-PV complementary system is proposed. Firstly, the difference between the generated noise and the original noise distribution is measured by combining Euclianian distance and L2 regularization loss function, and the UNet network structure suitable for the hydro-PV-load stochastic scenario generation is designed. Then, by continuously adding noise to the forward process and denoising training during the backward process, the changes of the correlation and the fluctuation characteristics of hydro-PV-load multi-dimensional variables are captured, and their probability distribution is fitted. Finally, the collaborative modeling of multi-source data is carried out to efficiently generate the hyrdo-PV-load stochastic scenario. A case is used to test the actual data collected from a regional power grid, and the effectiveness of the proposed method is verified by comprehensive evaluation indices.

     

/

返回文章
返回