李刚, 齐莹, 李银强, 张建付, 张力晖. 风力发电机组故障诊断与状态预测的研究进展[J]. 电力系统自动化, 2021, 45(4): 180-191.
引用本文: 李刚, 齐莹, 李银强, 张建付, 张力晖. 风力发电机组故障诊断与状态预测的研究进展[J]. 电力系统自动化, 2021, 45(4): 180-191.
LI Gang, QI Ying, LI Yinqiang, ZHANG Jianfu, ZHANG Lihui. Research Progress on Fault Diagnosis and State Prediction of Wind Turbine[J]. Automation of Electric Power Systems, 2021, 45(4): 180-191.
Citation: LI Gang, QI Ying, LI Yinqiang, ZHANG Jianfu, ZHANG Lihui. Research Progress on Fault Diagnosis and State Prediction of Wind Turbine[J]. Automation of Electric Power Systems, 2021, 45(4): 180-191.

风力发电机组故障诊断与状态预测的研究进展

Research Progress on Fault Diagnosis and State Prediction of Wind Turbine

  • 摘要: 风力发电机组因运行环境恶劣较易发生故障,实现对风电机组适当的状态维护或预防性维护,既能减少故障发生概率、降低维修成本,又能改善电力系统运行的安全性与经济性。首先,通过回顾近年来国内外在风电机组状态维护或预防性维护方面所做的相关研究工作,系统归纳了当前针对风电机组关键部件开展故障诊断和状态预测的难点问题及其研究进展;然后,对基于数据驱动的风电机组故障诊断与状态预测方法进行了重点论述;最后,对未来该领域的研究建议进行了展望。

     

    Abstract: Wind turbines have a high probability of failure because of the harsh operation environment. Proper condition-based maintenance or preventive maintenance of wind turbines can not only reduce the probability of failure and the maintenance cost, but also improve the safety and economy of power system operation. Firstly, this paper reviews the relevant research on conditionbased maintenance or preventive maintenance of wind turbines at home and abroad in recent years, and systematically summarizes the current difficulties and research progress on fault diagnosis and state prediction of key components for wind turbines. Then, the data-driven method of fault diagnosis and state prediction for wind turbines is emphasized. Finally, the future research of fault diagnosis and state prediction for wind turbines is prospected.

     

/

返回文章
返回