杨丽, 孙元章, 徐箭, 廖思阳, 彭刘阳. 基于在线强化学习的风电系统自适应负荷频率控制[J]. 电力系统自动化, 2020, 44(12): 74-83.
引用本文: 杨丽, 孙元章, 徐箭, 廖思阳, 彭刘阳. 基于在线强化学习的风电系统自适应负荷频率控制[J]. 电力系统自动化, 2020, 44(12): 74-83.
YANG Li, SUN Yuanzhang, XU Jian, LIAO Siyang, PENG Liuyang. Adaptive Load Frequency Control of Wind Power System Based on Online Reinforcement Learning[J]. Automation of Electric Power Systems, 2020, 44(12): 74-83.
Citation: YANG Li, SUN Yuanzhang, XU Jian, LIAO Siyang, PENG Liuyang. Adaptive Load Frequency Control of Wind Power System Based on Online Reinforcement Learning[J]. Automation of Electric Power Systems, 2020, 44(12): 74-83.

基于在线强化学习的风电系统自适应负荷频率控制

Adaptive Load Frequency Control of Wind Power System Based on Online Reinforcement Learning

  • 摘要: 大规模风电接入给系统带来新的不确定性,影响系统频率响应特性,从数据驱动的角度出发,提出了一种基于自适应动态模型的在线强化学习方法,用于系统的负荷频率控制。建立低秩自编码器特征提取网络,从所量测的低维数据中发现隐藏特征;基于特征网络,建立非线性动态系统稀疏辨识学习模型,感知系统动态模型的潜在物理状态,提升模型在线学习效率;通过结合模型预测控制,进行实时决策控制。所提出方法能够有效解决传统模型预测控制对系统全局模型准确性的依赖问题,加强控制器对系统动态模型的自适应性,且能有效跟踪风电输出功率的随机波动。最后,以接入四型风机的负荷频率控制模型为例,验证所提方法的有效性。

     

    Abstract: Large-scale wind power connected to the gird brings new uncertainties which affects the frequency response characteristics of the system. From the data-driven perspective, an online reinforcement learning method based on adaptive dynamic model for load frequency control is proposed. A low rank autoencoder feature extraction network is established to discover hidden features from the measured low-dimensional data. Based on the feature network, a sparse identification learning model for nonlinear dynamic system is established to detect the potential physical state of the dynamic model of the system and improve the online learning efficiency. Combined with model predictive control, real-time decision control is implemented. The proposed method can effectively solve the problem that traditional model predictive control depends on the accuracy of the system global model, enhance the adaptability of controller to the system dynamic model and effectively track the random fluctuation of wind power. Finally, the validity of the proposed control method is illustrated by load frequency control model integrated with type Ⅵwind turbine.

     

/

返回文章
返回