刘尚伟, 赵友国, 赵勇, 吴玲, 王宁宁, 潘凯岩. 基于行稀疏同构性的大型电网状态估计Givens旋转策略[J]. 电力系统自动化, 2023, 47(10): 195-204.
引用本文: 刘尚伟, 赵友国, 赵勇, 吴玲, 王宁宁, 潘凯岩. 基于行稀疏同构性的大型电网状态估计Givens旋转策略[J]. 电力系统自动化, 2023, 47(10): 195-204.
LIU Shangwei, ZHAO Youguo, ZHAO Yong, WU Ling, WANG Ningning, PAN Kaiyan. Givens Rotation Strategy of State Estimation for Large-scale Power Grid Based on Row Sparsity Isostructuralism[J]. Automation of Electric Power Systems, 2023, 47(10): 195-204.
Citation: LIU Shangwei, ZHAO Youguo, ZHAO Yong, WU Ling, WANG Ningning, PAN Kaiyan. Givens Rotation Strategy of State Estimation for Large-scale Power Grid Based on Row Sparsity Isostructuralism[J]. Automation of Electric Power Systems, 2023, 47(10): 195-204.

基于行稀疏同构性的大型电网状态估计Givens旋转策略

Givens Rotation Strategy of State Estimation for Large-scale Power Grid Based on Row Sparsity Isostructuralism

  • 摘要: 为满足大型电网状态估计在线计算速度的需求,提出一种基于行稀疏同构性的快速Givens正交变换旋转策略。该策略利用大型电网状态估计量测分布特点以及加权雅可比矩阵的稀疏特性,根据行同构模式动态选择旋转行对以及基于行稀疏度进行旋转轴选择和行排序,减少非零注入量及Givens旋转次数的同时,大大降低了计算时间。某大型电网计算结果表明,所提出的策略在不改变计算精度的同时,具有更高的计算效率,在Givens旋转效率以及中间非零注入元个数方面都得到了有效提升,满足大型电网实时状态估计计算的要求。

     

    Abstract: To meet the requirements of online computing speed of state estimation for the large-scale power grid,this paper proposes a fast rotation strategy of Givens orthogonal transformation based on row sparsity isostructuralism.This strategy takes advantage of the distribution characteristics of the state estimation measurement of the large-scale power grid and the sparsity of the weighted Jacobian matrix,dynamically selects rotating row pairs according to the row isomorphism pattern,and selects the rotation pivot and ranks the rows based on the row sparsity,which reduces the non-zero fill-in amount and the number of Givens rotation,and greatly reduces the computation time.The calculation results of a large-scale power grid show that the proposed strategy has a higher computation efficiency without changing the calculation accuracy,and the efficiency of the Givens rotation and the number of intermediate non-zero fill-in elements are effectively improved,which fully meets the requirements of real-time state estimation for the large-scale power grid.

     

/

返回文章
返回