大能源思维与大数据思维的融合 (二)应用及探索

薛禹胜, 赖业宁

薛禹胜, 赖业宁. 大能源思维与大数据思维的融合 (二)应用及探索[J]. 电力系统自动化, 2016, 40(8): 1-13.
引用本文: 薛禹胜, 赖业宁. 大能源思维与大数据思维的融合 (二)应用及探索[J]. 电力系统自动化, 2016, 40(8): 1-13.
XUE Yusheng, LAI Yening. Integration of Macro Energy Thinking and Big Data Thinking Part Two Applications and Explorations[J]. Automation of Electric Power Systems, 2016, 40(8): 1-13.
Citation: XUE Yusheng, LAI Yening. Integration of Macro Energy Thinking and Big Data Thinking Part Two Applications and Explorations[J]. Automation of Electric Power Systems, 2016, 40(8): 1-13.

大能源思维与大数据思维的融合 (二)应用及探索

基金项目: 

国家自然科学基金重点资助项目(61533010)

中英合作研究项目(513111025-2013)

中泰合作研究项目(5151101161)

国家电网公司科技项目~~

详细信息
    作者简介:

    薛禹胜(1941—),男,博士,中国工程院院士,国网电力科学研究院名誉院长,博士生导师,主要研究方向:电力系统自动化。E-mail:xueyusheng@sgepri.sgcc.com.cn赖业宁(1975—),男,通信作者,博士,高级工程师,主要研究方向:智能电网、电网调度自动化及新能源控制。E-mail:laiyening@sgepri.sgcc.com.cn

  • 中图分类号: TP311.13;TM76

Integration of Macro Energy Thinking and Big Data Thinking Part Two Applications and Explorations

Funds: 

supported by National Natural Science Foundation of China(No.61533010)

NSFC-EPSRC Collaborative Project(No.513111025-2013)

China-Thailand Cooperation Fund Project(No.5151101161)

State Grid Corporation of China

  • 摘要: 前一篇论文诠释了大数据及电力大数据思维。一方面将能源系统作为信息物理系统(CPS)概念中的物理系统,以打通电力系统与一次能源系统及终端能源系统之间的物理藩篱;另一方面,将专用网及互联网共同组成通信环节,打通调度业务与经营业务之间的信息壁垒。通过因果关系型、统计关系型及博弈等行为关系型的数据及相应的大数据技术,物理系统与信息系统融合为信息物理能源系统(CPES)。作为两篇论文的续篇按此观点探索电力(能源)大数据的应用,并通过若干课题的研究,归纳大数据技术对提高能源流在不同时间尺度及空间中的经济性与可靠性的作用与途径。包括:1在原本完全依靠统计分析的过程中加入因果分析手段,以提高前者的适用性与精度;2在原本完全依靠数学模型分析的过程中加入统计分析手段,以提高前者的效率;3综合应用模型分析、相关分析、行为分析与实验经济学仿真分析等手段,开创那些无法单独采用一种分析手段有效探索的研究领域,例如大能源系统与自然环境、社会环境、市场经济、政策等非能源环节的交互影响。
    Abstract: In part one of this series paper,the big data thinking and the macro energy thinking have been explained.On one hand,the energy system is considered in the context of the cyber-physical system,to break down the physical barriers among power system,primary energy system and end-use energy system.On the other hand,the private network and the Internet are combined together to constitute the communication system,to break down the barriers between operation and business activities.Thus,the above-mentioned physical and information systems can be integrated into a cyber-physical system,through causal data,statistical data,gambling data and corresponding big data technology.Along this direction,this paper explores the applications of power(energy)big data.Based on several topics that have been studied,the significance and approaches of big data technology in enhancing the economy and reliability of energy flow in different spatial and temporal scales are induced,which include:1 introduce casual analysis measures to topics that usually relied entirely on statistical analysis,to improve the applicability and accuracy;2 introduce statistical analysis measures to topics that usually relied entirely on casual analysis,to enhance the efficiency; 3 combine casual analysis,statistical analysis and experimental economics simulation analysis,to create a new research area of what a single analysis paradigm cannot solved,such as the interactions between the macro energy system and the natural environment,the social environment,market economy,policy and other non-energy sectors.
  • [1] 薛禹胜,肖世杰.综合防御高风险的小概率事件——对日本相继天灾引发大停电及核泄漏事件的思考[J].电力系统自动化,2011,35(8):1-11.

    XUE Yusheng,XIAO Shijie.Comprehensively defending high risk events with low probability[J].Automation of Electric Power Systems,2011,35(8):1-11.

    [2]

    XUE Y S,XIAO S J.Generalized congestion of power systems:insights from the massive blackouts in India[J].Journal of Modern Power Systems and Clean Energy,2013,1(2):91-100.

    [3] 乌克兰电力系统遭受攻击事件综合分析报告[EB/OL].[2016-02-26]. http://mp.weixin.qq.com/s?__biz=MjM5MTA3Nzk4MQ==&mid=401994100&idx=1&sn=ebbe4e2dd089c3a12b914546367678b5&scene=2&srcid=0226JvA9wUCKeXGPi GPNsaiQ&from=timeline&isappinstalled=0#wechat_redirect.
    [4] 刘振亚.中国电力与能源[M].北京:中国电力出版社,2012.
    [5]

    TOLLE K M,TANSLEY D S W,HEY A J G.The fourth paradigm:data-intensive scientific discovery[J].Proceedings of the IEEE,2011,99(8):1334-1337.

    [6] 薛禹胜,赖业宁.大能源思维与大数据思维的融合:(一)大数据与电力大数据[J].电力系统自动化,2016,40(1):1-8.DOI: 10.7500/AEPS20151208005.

    XUE Yusheng,LAI Yening.Integration of macro energy thinking and big data thinking:Part one big data and power big data[J].Automation of Electric Power Systems,2016,40(1):1-8.DOI: 10.7500/AEPS20151208005.

    [7]

    XUE Y.The stability-preserving trajectory-reduction methodology for analyzing nonlinear dynamics[C]//International Conferences on Info-tech&Info-net(ICII2001),October 29-November 1,2001,Beijing,China:7-19.

    [8]

    QIU R,ANTONIK P.Big data and smart grid:a random matrix[M].Hoboken,NJ,USA:John Wiley and Sons Ltd,2014:33-60.

    [9] 宋亚奇,周国亮,朱永利.智能电网大数据处理技术现状与挑战[J].电网技术,2013,37(4):927-935.

    SONG Yaqi,ZHOU Guoliang,ZHU Yongli.Present status and challenges of big data processing in smart grid[J].Power System Technology,2013,37(4):927-935.

    [10] 苗新,张东霞,孙德栋.在配电网中应用大数据的机遇与挑战[J].电网技术,2015,39(11):3122-3127.

    MIAO Xin,ZHANG Dongxia,SUN Dedong.The opportunity and challenge of big data’s application in power distribution networks[J].Power System Technology,2015,39(11):3122-3127.

    [11]

    US-Canada Power System Outage Task Force.Final report on the August 14th blackout in the United States and Canada:causes and recommendations[EB/OL].[2016-03-01]. http://www.nerc.com/.

    [12] 曲朝阳,陈帅,杨帆,等.基于云计算技术的电力大数据预处理属性约简方法[J].电力系统自动化,2014,38(8):67-71.DOI: 10.7500/AEPS20130601001.

    QU Zhaoyang,CHEN Shuai,YANG Fan,et al.An attribute reducing method for electric power big data preprocessing based on cloud computing technology[J].Automation of Electric Power Systems,2014,38(8):67-71.DOI: 10.7500/AEPS20130601001.

    [13] 严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013,23(4):168-172.

    YAN Xiaofeng,ZHANG Dexin.Big data research[J].Computer Technology and Development,2013,23(4):168-172.

    [14]

    DORR D,GRAY G.The whys,whats,and hows of managing data as an asset[R].California,USA:Electric Power Research Institute,2014.

    [15] 中国电机工程学会信息化专委会.中国电力大数据发展白皮书[R].北京:中国电机工程学会,2013.
    [16]

    CHEN Y,SHEN C.A Jacobian-free Newton-GMRES(m)method with adaptive preconditioner and its application for power flow calculations[J].IEEE Trans on Power Systems,2006,21(3):1096-1103.

    [17] 覃智君,侯云鹤,吴复立.大规模交直流系统潮流计算的实用化模型[J].中国电机工程学报,2011,31(10):95-101.

    QIN Zhijun,HOU Yunhe,WU Fuli.Practical model for largescale AC-DC system power flow calculation[J].Proceedings of the CSEE,2011,31(10):95-101.

    [18] 孙宏斌,王康,张伯明,等.采用线性决策树的暂态稳定规则提取[J].中国电机工程学报,2011,31(34):61-67.

    SUN Hongbin,WANG Kang,ZHANG Boming,et al.Rule extraction in transient stability study using linear decision trees[J].Proceedings of the CSEE,2011,31(34):61-67.

    [19] 于之虹,郭志忠.基于数据挖掘理论的电力系统暂态稳定评估[J].电力系统自动化,2003,27(8):45-48.

    YU Zhihong,GUO Zhizhong.A novel approach for transient stability assessment based on data mining theory[J].Automation of Electric Power Systems,2003,27(8):45-48.

    [20] 马世英,仲悟之,汤涌,等.基于多信息源的电压安全全过程预警及防控系统[J].电网技术,2013,37(9):2459-2465.

    MA Shiying,ZHONG Wuzhi,TANG Yong,et al.A multiple information sources based whole process early warning and preventive control system for voltage security[J].Power System Technology,2013,37(9):2459-2465.

    [21] 薛禹胜.运动稳定性量化理论——非自治非线性多刚体系统的稳定性分析[M].南京:江苏科学技术出版社,1999.
    [22] 郁琛,薛禹胜,文福拴,等.按时序特征优化模型后在线选配的超短期风电预测[J].电力系统自动化,2015,39(8):5-11.DOI: 10.7500/AEPS20141230007.

    YU Chen,XUE Yusheng,WEN Fushuan,et al.An ultrashort-term wind power prediction method using“offline classification and optimization online model matching”based on time series features[J].Automation of Electric Power Systems,2015,39(8):5-11.DOI: 10.7500/AEPS20141230007.

    [23] 薛禹胜,谢东亮,薛峰,等.智能电网运行充裕性的研究框架:(一)要素与模型[J].电力系统自动化,2014,38(10):1-9.DOI: 10.7500/AEPS20140416001.

    XUE Yusheng,XIE Dongliang,XUE Feng,et al.A research framework for operation adequacy in smart grid:Part one elements and models[J].Automation of Electric Power Systems,2014,38(10):1-9.DOI: 10.7500/AEPS20140416001.

    [24] 薛禹胜,戴元煜,于继来,等.可信度控制下的相继开断潮流快速计算[J].电力系统自动化,2015,39(22):37-45.DOI: 10.7500/AEPS20150214002.

    XUE Yusheng,DAI Yuanyu,YU Jilai,et al.A credibility index based algorithm for fast estimating power flow in cascading failures[J].Automation of Electric Power Systems,2015,39(22):37-45.DOI: 10.7500/AEPS20150214002.

    [25]

    XUE Y S,HUANG T G,LI K,et al.An efficient and robust case sorting algorithm for transient stability assessment[C]//IEEE Power and Energy Society General Meeting,July 26-30,2015,Denver,USA:5p.

    [26]

    XUE Y S.The mechanisms of unstable modes evolving with fault clearing time[C]//Proceedings of the 16th Symposium on Electrical Power Engineering,November,1995,Taiwan,China.

    [27] 薛禹胜,吴勇军,谢云云,等.停电防御框架向自然灾害预警的拓展[J].电力系统自动化,2013,37(16):18-26.

    XUE Yusheng,WU Yongjun,XIE Yunyun,et al.Extension of blackout defense scheme to natural disasters early-warning[J].Automation of Electric Power Systems,2013,37(16):18-26.

    [28]

    XUE Y S,WU J A,XIE D L,et al.Experimental study on EV purchases assisted by multi-agents representing a set of questionnaires[C]//International Conference of Life System Modeling and Simulation(LSMS)and International Conference on Intelligent Computing for Sustainable Energy and Environment(ICSEE),September 20-23,2014,Shanghai,China:11p.

    [29]

    XUE Y S,WU J A,XIE D L,et al.Multi-agents modelling of EV purchase willingness based on questionnaires[J].Journal of Modern Power Systems and Clean Energy,2015,3(2):149-159.

    [30]

    HUANG J,XUE Y S,JIANG C,et al.An experimental study on emission trading behaviors of generation companies[J].IEEE Trans on Power Systems,2015,30(2):1076-1083.

    [31]

    XUE Y S,LI T R,YIN X,et al.Managements of generalized congestions[J].IEEE Trans on Smart Grid,2013,4(3):1675-1683.

    [32]

    YU W J,XUE Y S,LUO J B,et al.A UHV grid security and stability defense system:considering the risk of power system communication[J].IEEE Trans on Smart Grid,2016,7(1):491-500.

    [33] 赵俊华,文福拴,薛禹胜,等.电力CPS的架构及其实现技术与挑战[J].电力系统自动化,2010,34(16):1-7.

    ZHAO Junhua,WEN Fushuan,XUE Yusheng,et al.Cyber physical power systems:architecture,implementation techniques and challenges[J].Automation of Electric Power Systems,2010,34(16):1-7.

    [34] 徐伟,薛禹胜,陈实,等.从实测轨迹提取知识时的困难及展望[J].电力系统自动化,2009,33(15):1-7.

    XU Wei,XUE Yusheng,CHEN Shi,et al.Difficulties and prospects of knowledge extracting from measured trajectories[J].Automation of Electric Power Systems,2009,33(15):1-7.

    [35] 董朝阳,赵俊华,文福拴,等.从智能电网到能源互联网:基本概念与研究框架[J].电力系统自动化,2014,38(15):1-11.DOI: 10.7500/AEPS20140613007.

    DONG Zhaoyang,ZHAO Junhua,WEN Fushuan,et al.From smart grid to Energy Internet:basic concept and research framework[J].Automation of Electric Power Systems,2014,38(15):1-11.DOI: 10.7500/AEPS20140613007.

    [36]

    XUE Y S.Energy Internet or comprehensive energy network?[J].Journal of Modern Power Systems and Clean Energy,2015,3(3):297-301.

    [37]

    XUE Y S,CAI B,JAMES G,et al.Primary energy congestion of power systems[J].Journal of Modern Power Systems and Clean Energy,2014,2(1):39-49.

    [38]

    XUE Y S,NI M,YU J,et al.Study of the impact of communication failures on power system[C]//IEEE Power and Energy Society General Meeting,July 26-30,2015,Denver,USA.

    [39] 陈启鑫,刘敦楠,林今,等.能源互联网的商业模式与市场机制(一)[J].电网技术,2015,39(11):3050-3056.

    CHEN Qixin,LIU Dunnan,LIN Jin,et al.Business models and market mechanisms of Energy Internet(1)[J].Power System Technology,2015,39(11):3050-3056.

    [40]

    YU X,XUE Y.Smart grids:a cyber-physical systems perspective[J].Proceedings of the IEEE,January 2016:1-13.DOI: 10.1109/JPROC.2015.2503119.

    [41] 李国杰.大数据研究的科学价值[J].中国计算机学会通讯,2012,8(9):8-15.

    LI Guojie.Scientific value of big data research[J].Chinese Computer Academy Newsletter,2012,8(9):8-15.

    [42] 黄彦浩,于之虹,谢昶.等.电力大数据技术与电力系统仿真计算结合问题研究[J].中国电机工程学报,2015,35(1):13-22.

    HUANG Yanhao,YU Zhihong,XIE Chang,et al.Study on the application of electric power big data technology in power system simulation[J].Proceedings of the CSEE,2015,35(1):13-22.

    [43] 潘柱廷,程学旗,袁晓如,等.CCF大专委2016年大数据发展趋势预测——解读和行动建议[J].大数据,2016(1):105-113.

    PAN Zhuting,CHENG Xueqi,YUAN Xiaoru,et al.Developing trend forecasting of big data in 2016from CCF TFBD:interpretation and proposals[J].Big Data,2016(1):105-113.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-10

目录

    /

    返回文章
    返回