于丹文, 杨明, 翟鹤峰, 韩学山. 鲁棒优化在电力系统调度决策中的应用研究综述[J]. 电力系统自动化, 2016, 40(7): 134-143,148.
引用本文: 于丹文, 杨明, 翟鹤峰, 韩学山. 鲁棒优化在电力系统调度决策中的应用研究综述[J]. 电力系统自动化, 2016, 40(7): 134-143,148.
YU Danwen, YANG Ming, ZHAI Hefeng, HAN Xueshan. An Overview of Robust Optimization Used for Power System Dispatch and Decision-making[J]. Automation of Electric Power Systems, 2016, 40(7): 134-143,148.
Citation: YU Danwen, YANG Ming, ZHAI Hefeng, HAN Xueshan. An Overview of Robust Optimization Used for Power System Dispatch and Decision-making[J]. Automation of Electric Power Systems, 2016, 40(7): 134-143,148.

鲁棒优化在电力系统调度决策中的应用研究综述

An Overview of Robust Optimization Used for Power System Dispatch and Decision-making

  • 摘要: 鲁棒优化是一种利用区间扰动信息,在最劣扰动条件下进行最优决策的优化方法,因其具有基础数据易得、计算效率高、适用于大规模系统求解等优点,近来,被应用于电力系统的调度决策问题。文中在阐明鲁棒优化自身特点的基础上,首先,对鲁棒优化方法在电力系统机组组合问题中的应用进行了介绍,阐述了连续性、偶发性扰动模式下的鲁棒优化方法建模规律,讨论了常用不确定集的形式和保守度的控制方法;其次,介绍了鲁棒优化方法在经济调度问题中的研究现状,介绍了三类典型方法,包括自适应鲁棒优化方法、含仿射矫正过程的实时调度鲁棒优化方法和最大化可接受扰动范围鲁棒优化方法,并对其各自的特点进行了阐述;最后,对该领域研究面临的关键问题和未来的发展方向进行了探讨和分析。

     

    Abstract: Robust optimization,as one of the optimization methods utilizing disturbance molded by interval,is intended to find optimal decision under the worst disturbance conditions.It can be applied to power system dispatch and decision-making for its advantages,such as data availability,computing efficiency and applicability of large-scale systems,etc.First of all,on the basis of illustrating the characteristics of robust optimization itself,this paper introduces the application of robust optimization to unit commitment problems in power system,expounds the law of model-building under continuity and accidental disturbance,discusses the commonly used uncertainty sets and ways to limit the degree of conservatism.Secondly,this paper describes current researches on robust optimization in economic dispatch problems,presents the characteristics of three kinds of typical methods,including adaptive robust optimization,robust optimization considering affine policy and robust optimization with the objective to maximize the acceptable range of deviations.Finally,key problems and future direction in this field of research are discussed and analyzed.

     

/

返回文章
返回