胡维昊, 曹迪, 黄琦, 张斌, 李思辰, 陈哲. 深度强化学习在配电网优化运行中的应用[J]. 电力系统自动化, 2023, 47(14): 174-191.
引用本文: 胡维昊, 曹迪, 黄琦, 张斌, 李思辰, 陈哲. 深度强化学习在配电网优化运行中的应用[J]. 电力系统自动化, 2023, 47(14): 174-191.
HU Weihao, CAO Di, HUANG Qi, ZHANG Bin, LI Sichen, CHEN Zhe. Application of Deep Reinforcement Learning in Optimal Operation of Distribution Network[J]. Automation of Electric Power Systems, 2023, 47(14): 174-191.
Citation: HU Weihao, CAO Di, HUANG Qi, ZHANG Bin, LI Sichen, CHEN Zhe. Application of Deep Reinforcement Learning in Optimal Operation of Distribution Network[J]. Automation of Electric Power Systems, 2023, 47(14): 174-191.

深度强化学习在配电网优化运行中的应用

Application of Deep Reinforcement Learning in Optimal Operation of Distribution Network

  • 摘要: 深度强化学习结合了深度学习的感知能力和强化学习的决策能力,在多个复杂场景中取得了优异的控制效果,并被应用于配电网的优化和控制问题中。文中首先分析了传统配电网优化方法的优势和不足,然后对深度强化学习算法进行概述,并根据应用问题背景的不同,从含有储能装置的调度控制、动态重构、恢复力研究以及无功优化与电压控制等多个方面开展文献综述,详细分析了其在配电网不同应用中的优势和不足。然后,以工程实际中的两个深度强化学习的应用案例来进一步阐述其在指导电力行业生产实践方面的应用潜力以及面临的问题。最后,对深度强化学习在配电网中应用所面临的挑战和前景进行分析和展望。

     

    Abstract: Deep reinforcement learning combines the perception ability of deep learning with the decision-making ability of reinforcement learning. It has achieved excellent control effects in multiple complex scenarios and has been applied to the optimization and control of distribution networks. This paper first analyzes the advantages and disadvantages of traditional optimization methods for the distribution network, and then summarizes the deep reinforcement learning algorithm. According to different application problem backgrounds, a literature review is carried out from the aspects of dispatching and control of energy storage devices, dynamic reconfiguration, restoration ability research, reactive power optimization, and voltage control. And the advantages and disadvantages of the deep reinforcement learning algorithm in different applications of the distribution network are analyzed in detail. After that, two application cases of deep reinforcement learning in engineering practice are used to further elaborate the application potential and disadvantages of deep reinforcement learning in guiding the production practice of the electric power industry. Finally, the challenges and prospects of the application of deep reinforcement learning in the distribution network are analyzed.

     

/

返回文章
返回