夏越, 陈颖, 杜松怀, 苏娟, 兰天, 宋瑞凯. 综合能源系统多时间尺度动态时域仿真关键技术[J]. 电力系统自动化, 2022, 46(10): 97-110.
引用本文: 夏越, 陈颖, 杜松怀, 苏娟, 兰天, 宋瑞凯. 综合能源系统多时间尺度动态时域仿真关键技术[J]. 电力系统自动化, 2022, 46(10): 97-110.
XIA Yue, CHEN Ying, DU Songhuai, SU Juan, LAN Tian, SONG Ruikai. Key Technologies for Multi-time-scale Dynamic Time-domain Simulation of Integrated Energy System[J]. Automation of Electric Power Systems, 2022, 46(10): 97-110.
Citation: XIA Yue, CHEN Ying, DU Songhuai, SU Juan, LAN Tian, SONG Ruikai. Key Technologies for Multi-time-scale Dynamic Time-domain Simulation of Integrated Energy System[J]. Automation of Electric Power Systems, 2022, 46(10): 97-110.

综合能源系统多时间尺度动态时域仿真关键技术

Key Technologies for Multi-time-scale Dynamic Time-domain Simulation of Integrated Energy System

  • 摘要: 近年来,为实现多种能源互补共济与高效利用,集电、热、气于一体的综合能源系统在世界范围内得到了广泛的关注。高效、精确的多时间尺度动态时域仿真是支撑综合能源系统运行和控制的关键技术。文中以综合能源系统动态建模仿真为研究对象,首先介绍了典型综合能源系统的结构与动态过程。然后,从基础模型、仿真技术、数值计算3个关键点介绍了综合能源系统动态建模仿真技术所取得的研究进展,主要包括多能耦合通用建模理论、分区多速率仿真技术、异质能源网络高效数值计算实现方法。在此基础上,讨论了现有研究中仍需解决的关键难题,如变工况动态建模、多速率分区接口处理、数值求解格式选取等问题。最后,对未来综合能源系统动态建模仿真关键技术的研究方向与应用前景进行了展望。

     

    Abstract: In order to improve the energy efficiency, integrated energy systems(i.e. integrated electricity-heat-gas systems) attract increasing attention worldwide in recent years. Efficient and accurate multi-time-scale dynamic time-domain simulations play an essential role in the operation and control of the integrated energy system. Taking the dynamic modeling and simulation of the integrated energy system as the research object, the structure and dynamic process of integrated energy system is presented first in this paper. Then, this paper introduces the research progress achieved in the dynamic modeling and simulation technology of integrated energy system from three key points of basic model, simulation technology and numerical calculation, mainly including multi-energy coupling general modeling theory, partitioned multi-rate simulation technology, and efficient numerical calculation implementation method for heterogeneous energy networks. On this basis, the key challenges that still need to be solved in the existing research are discussed, such as dynamic modeling under variable operating conditions, multi-rate partitioning interface processing, and selection of numerical solution formats. Finally, the research directions and application scenarios of key dynamic modeling and simulation techniques for the future integrated energy system are prospected.

     

/

返回文章
返回