邓旭晖, 陈中, 杨凯, 刘勃. 基于多任务学习卷积网络的非侵入式负荷监测方法[J]. 电力系统自动化, 2023, 47(8): 189-197.
引用本文: 邓旭晖, 陈中, 杨凯, 刘勃. 基于多任务学习卷积网络的非侵入式负荷监测方法[J]. 电力系统自动化, 2023, 47(8): 189-197.
DENG Xuhui, CHEN Zhong, YANG Kai, LIU Bo. Non-intrusive Load Monitoring Method Based on Multi-task Learning Convolutional Network[J]. Automation of Electric Power Systems, 2023, 47(8): 189-197.
Citation: DENG Xuhui, CHEN Zhong, YANG Kai, LIU Bo. Non-intrusive Load Monitoring Method Based on Multi-task Learning Convolutional Network[J]. Automation of Electric Power Systems, 2023, 47(8): 189-197.

基于多任务学习卷积网络的非侵入式负荷监测方法

Non-intrusive Load Monitoring Method Based on Multi-task Learning Convolutional Network

  • 摘要: 随着居民用户对设备耗能管理需求的增长,低硬件成本的非侵入式负荷监测技术具有巨大的工程应用价值。目前,负荷监测深度网络存在输出假阳性功率片段问题,造成对电器开关运行状态的误判,影响负荷分解精度。为此,提出一种基于多任务学习的非侵入式负荷监测方法。首先,建立基于多分支卷积网络及改进后处理的负荷监测推理框架,在负荷功率分解网络主分支的基础上,设立开关状态判定分支网络,引入电器开关序列监督信息,通过多任务聚合损失函数调整网络训练时梯度反向传播过程,降低了运行状态误判率。然后,采用加权均值滤波对网络输出的开关状态评估值和功率输出值进行后处理,进一步降低负荷分解误差。最后,在UK-DALE数据集上开展对比实验,实验结果表明所提方法能够较好地分离出包含复杂功率特性的电器负荷,验证了方法的有效性。

     

    Abstract: With the increasing demand for energy management of devices by residential users, the non-intrusive load monitoring(NILM) technology with low hardware cost has great engineering application value. At present, the load monitoring deep network has the problem of outputting false positive power segments, which leads to the misjudgment of on/off operation status of the electric appliance and affects the accuracy of load decomposition. Therefore, an NILM method based on multi-task learning is proposed. First, a load monitoring inference framework based on the multi-branch convolutional network and improved postprocessing is established. Based on the main branch of the load power decomposition network, an on/off status evaluation subbranch network is set up, and the supervision information of on/off sequence of the electric appliance is introduced. The gradient backpropagation process during network training is adjusted by the multi-task aggregation loss function, which reduces the misjudgment rate of the operation status. Then, the weighted mean filtering is used to post-process the on/off status evaluation value and power output value of the network to further reduce the load decomposition error. Finally, the comparative experiments are carried out on the UK-DALE data set. The experimental results show that the proposed method can well separate the electric appliance load containing complex power characteristics, and the effectiveness of the method is verified.

     

/

返回文章
返回