黎海涛, 刘伊然, 杨艳红, 肖浩, 谢冬雪, 裴玮. 基于改进联邦竞争深度Q网络的多微网能量管理策略[J]. 电力系统自动化, 2024, 48(8): 174-184.
引用本文: 黎海涛, 刘伊然, 杨艳红, 肖浩, 谢冬雪, 裴玮. 基于改进联邦竞争深度Q网络的多微网能量管理策略[J]. 电力系统自动化, 2024, 48(8): 174-184.
LI Haitao, LIU Yiran, YANG Yanhong, XIAO Hao, XIE Dongxue, PEI Wei. Energy Management Strategy for Multi-microgrid Based on Improved Federated Dueling Deep Q Network[J]. Automation of Electric Power Systems, 2024, 48(8): 174-184.
Citation: LI Haitao, LIU Yiran, YANG Yanhong, XIAO Hao, XIE Dongxue, PEI Wei. Energy Management Strategy for Multi-microgrid Based on Improved Federated Dueling Deep Q Network[J]. Automation of Electric Power Systems, 2024, 48(8): 174-184.

基于改进联邦竞争深度Q网络的多微网能量管理策略

Energy Management Strategy for Multi-microgrid Based on Improved Federated Dueling Deep Q Network

  • 摘要: 目前,基于联邦深度强化学习的微网(MG)能量管理研究未考虑多类型能量转换与MG间电量交易的问题,同时,频繁交互模型参数导致通信时延较大。基于此,以一种包含风、光、电、气等多类型能源的MG为研究对象,构建了支持MG间电量交易和MG内能量转换的能量管理模型,提出基于正余弦算法的联邦竞争深度Q网络学习算法,并基于该算法设计了计及能量交易与转换的多MG能量管理与优化策略。仿真结果表明,所提能量管理策略在保护数据隐私的前提下,能够得到更高奖励且最大化MG经济收益,同时降低了通信时延。

     

    Abstract: Current research on microgrid(MG) energy management based on federated deep reinforcement learning has not considered the problem of multiple types of energy conversion and power trading among MGs, while frequent interaction of model parameters leads to large communication latency. Based on this, an MC including multiple types of energies such as wind, solar, electricity, and gas is studied. An energy management model that allows for inter-MG electricity trading and intra-MG energy conversion is constructed. A federated dueling deep Q-network(Dueling DQN) learning algorithm based on the sine cosine algorithm(SCA) is proposed, and a multi-microgrid energy management and optimization strategy considering energy conversion and trading is designed based on the proposed algorithm. The simulation results show that the proposed energy management strategy can achieve higher rewards to maximize microgrid economic benefits while protecting data privacy and reducing communication latency.

     

/

返回文章
返回