董运昌, 王启明, 曹杰, 杨渊博, 余通, 薄小永. 基于过采样和级联机器学习的电网虚假数据注入攻击识别[J]. 电力系统自动化, 2023, 47(8): 179-188.
引用本文: 董运昌, 王启明, 曹杰, 杨渊博, 余通, 薄小永. 基于过采样和级联机器学习的电网虚假数据注入攻击识别[J]. 电力系统自动化, 2023, 47(8): 179-188.
DONG Yun-chang, WANG Qi-ming, CAO Jie, YANG Yuan-bo, YU Tong, BO Xiao-yong. Identification of False Data Injection Attacks in Power Grid Based on Oversampling and Cascade Machine Learning[J]. Automation of Electric Power Systems, 2023, 47(8): 179-188.
Citation: DONG Yun-chang, WANG Qi-ming, CAO Jie, YANG Yuan-bo, YU Tong, BO Xiao-yong. Identification of False Data Injection Attacks in Power Grid Based on Oversampling and Cascade Machine Learning[J]. Automation of Electric Power Systems, 2023, 47(8): 179-188.

基于过采样和级联机器学习的电网虚假数据注入攻击识别

Identification of False Data Injection Attacks in Power Grid Based on Oversampling and Cascade Machine Learning

  • 摘要: 虚假数据注入攻击(FDIA)因其高隐蔽性和破坏性,对电网的安全稳定运行构成严重威胁。攻击样本与正常样本的不平衡特性会影响模型的攻击检测精度,同时多类型FDIA的出现使得现有算法在识别攻击种类上具有局限性。针对上述问题,文中提出基于过采样和级联机器学习的电网多类型FDIA识别方法。首先,探究了电网耦合交互过程中的FDIA攻击路径,分析了多类型攻击行为;然后,通过聚类、过滤和线性插值过程生成攻击伪样本,设计基于K均值合成少数类过采样技术(K-means-Smote)的量测数据平衡算法;最后,结合细粒度特征扫描和多个分类器的集成学习策略,构建基于改进级联机器学习的多类型FDIA识别模型。仿真实验表明,所提识别方法可有效辨识多种FDIA类型,且辨识精度高、误报率较低、性能稳定,在小样本下性能仍然出色。

     

    Abstract: False data injection attack(FDIA) has become a serious threat to the safe and stable operation of power grids due to its high concealment and destructiveness. The imbalance characteristics between attack samples and normal samples affect the attack detection accuracy of the model. Meanwhile, the emergence of multi-type FDIA makes existing algorithms have limitations in identifying attack types. Aiming at the above problems, this paper proposes a multi-type FDIA identification method for power grids based on oversampling and cascade machine learning. First, the FDIA attack path in the power grid coupling interaction process is explored, and multi-type attack behaviors are analyzed. Then, the attack pseudo-samples are generated through the process of clustering, filtering and linear interpolation, and the measurement data balance algorithm based on K-means-synthetic minority oversampling technique(K-means-Smote) is designed. Finally, a multi-type FDIA identification model with improved cascade machine learning is constructed by combining fine-grained feature scanning and an ensemble learning strategy of multiple classifiers. Simulation experiments show that the proposed identification method can effectively identify a variety of FDIA types,with high identification accuracy, low false alarm rate, stable and excellent performance, even for small samples.

     

/

返回文章
返回